“Following” $operatorname{exp}(lambda)$ random variables “sum” to $operatorname{Poi}(lambda t)$...












0












$begingroup$



Lifetime of a bulb is distributed $operatorname{exp}(lambda)$. When one light bulb is burned we replace it immidietely. Let $N_t$ be the number of bulbs we've used by time $t$. Prove that $N_t sim operatorname{Poi}(lambda t)$.




Where is the mistake in my solution?



For all $iin mathbb{N}$, let $X_i simoperatorname{exp}(lambda)$ be the lifetime of bulb #$i$. $(X_i)$ are independent.
$$
\ mathbb{P}(N_t=k)=mathbb{P}(t-1<X_1+...+X_kleq t)
\= dots = (tlambda)^{k-1}cdot e^{-lambda t} (e^{-lambda}-1)
$$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$



    Lifetime of a bulb is distributed $operatorname{exp}(lambda)$. When one light bulb is burned we replace it immidietely. Let $N_t$ be the number of bulbs we've used by time $t$. Prove that $N_t sim operatorname{Poi}(lambda t)$.




    Where is the mistake in my solution?



    For all $iin mathbb{N}$, let $X_i simoperatorname{exp}(lambda)$ be the lifetime of bulb #$i$. $(X_i)$ are independent.
    $$
    \ mathbb{P}(N_t=k)=mathbb{P}(t-1<X_1+...+X_kleq t)
    \= dots = (tlambda)^{k-1}cdot e^{-lambda t} (e^{-lambda}-1)
    $$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$



      Lifetime of a bulb is distributed $operatorname{exp}(lambda)$. When one light bulb is burned we replace it immidietely. Let $N_t$ be the number of bulbs we've used by time $t$. Prove that $N_t sim operatorname{Poi}(lambda t)$.




      Where is the mistake in my solution?



      For all $iin mathbb{N}$, let $X_i simoperatorname{exp}(lambda)$ be the lifetime of bulb #$i$. $(X_i)$ are independent.
      $$
      \ mathbb{P}(N_t=k)=mathbb{P}(t-1<X_1+...+X_kleq t)
      \= dots = (tlambda)^{k-1}cdot e^{-lambda t} (e^{-lambda}-1)
      $$










      share|cite|improve this question











      $endgroup$





      Lifetime of a bulb is distributed $operatorname{exp}(lambda)$. When one light bulb is burned we replace it immidietely. Let $N_t$ be the number of bulbs we've used by time $t$. Prove that $N_t sim operatorname{Poi}(lambda t)$.




      Where is the mistake in my solution?



      For all $iin mathbb{N}$, let $X_i simoperatorname{exp}(lambda)$ be the lifetime of bulb #$i$. $(X_i)$ are independent.
      $$
      \ mathbb{P}(N_t=k)=mathbb{P}(t-1<X_1+...+X_kleq t)
      \= dots = (tlambda)^{k-1}cdot e^{-lambda t} (e^{-lambda}-1)
      $$







      probability probability-distributions random-variables poisson-distribution exponential-distribution






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 14 '18 at 16:17







      J. Doe

















      asked Dec 13 '18 at 14:50









      J. DoeJ. Doe

      16111




      16111






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Mistakes:



          1) In first line on RHS you use $n$ instead of $k$.



          2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$





          What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.



          It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038104%2ffollowing-operatornameexp-lambda-random-variables-sum-to-operatorna%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Mistakes:



            1) In first line on RHS you use $n$ instead of $k$.



            2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$





            What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.



            It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Mistakes:



              1) In first line on RHS you use $n$ instead of $k$.



              2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$





              What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.



              It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Mistakes:



                1) In first line on RHS you use $n$ instead of $k$.



                2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$





                What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.



                It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$






                share|cite|improve this answer









                $endgroup$



                Mistakes:



                1) In first line on RHS you use $n$ instead of $k$.



                2) ${N_t=k}neq{t-1<X_1+cdots+X_kleq t}$





                What we do have is ${N_t= k}={X_1+cdots+X_kleq t<X_1+cdots+X_k+X_{k+1}}$.



                It is handsome to make use of: $$P(N_t=k)=P(N_tgeq k)-P(N_tgeq k+1)$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 13 '18 at 15:07









                drhabdrhab

                102k545136




                102k545136






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038104%2ffollowing-operatornameexp-lambda-random-variables-sum-to-operatorna%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Le Mesnil-Réaume

                    Ida-Boy-Ed-Garten