Horrible limit envolving floor function












10












$begingroup$


Let $xin [0,1]$, $ellinmathbb{Z}$ and $tau>0$. I want to calculate
$$lim_{Ltoinfty}sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}cosleft(2pi ellfrac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L}right).$$



I think the result is $exp(-2pi^2ell^2tau)cos(2piell x)$ but I have no idea in how to prove it.



I tried estimating the binomial with Stirling's aproximation but without success.










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    Wow, this is really horrible.
    $endgroup$
    – thesagniksaha
    Dec 15 '18 at 21:25






  • 1




    $begingroup$
    Have you tried replacing the cosine by an complex exponential, using the Newton formula and studying the different factors?
    $endgroup$
    – Mindlack
    Dec 15 '18 at 21:36












  • $begingroup$
    @Mindlack Which formula by Newton?
    $endgroup$
    – Gabriel Ribeiro
    Dec 15 '18 at 22:12










  • $begingroup$
    I meant $(1+z)^n=ldots$.
    $endgroup$
    – Mindlack
    Dec 15 '18 at 22:22






  • 1




    $begingroup$
    Factor out everything that does not depend on $k$.
    $endgroup$
    – Mindlack
    Dec 15 '18 at 22:29
















10












$begingroup$


Let $xin [0,1]$, $ellinmathbb{Z}$ and $tau>0$. I want to calculate
$$lim_{Ltoinfty}sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}cosleft(2pi ellfrac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L}right).$$



I think the result is $exp(-2pi^2ell^2tau)cos(2piell x)$ but I have no idea in how to prove it.



I tried estimating the binomial with Stirling's aproximation but without success.










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    Wow, this is really horrible.
    $endgroup$
    – thesagniksaha
    Dec 15 '18 at 21:25






  • 1




    $begingroup$
    Have you tried replacing the cosine by an complex exponential, using the Newton formula and studying the different factors?
    $endgroup$
    – Mindlack
    Dec 15 '18 at 21:36












  • $begingroup$
    @Mindlack Which formula by Newton?
    $endgroup$
    – Gabriel Ribeiro
    Dec 15 '18 at 22:12










  • $begingroup$
    I meant $(1+z)^n=ldots$.
    $endgroup$
    – Mindlack
    Dec 15 '18 at 22:22






  • 1




    $begingroup$
    Factor out everything that does not depend on $k$.
    $endgroup$
    – Mindlack
    Dec 15 '18 at 22:29














10












10








10


1



$begingroup$


Let $xin [0,1]$, $ellinmathbb{Z}$ and $tau>0$. I want to calculate
$$lim_{Ltoinfty}sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}cosleft(2pi ellfrac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L}right).$$



I think the result is $exp(-2pi^2ell^2tau)cos(2piell x)$ but I have no idea in how to prove it.



I tried estimating the binomial with Stirling's aproximation but without success.










share|cite|improve this question









$endgroup$




Let $xin [0,1]$, $ellinmathbb{Z}$ and $tau>0$. I want to calculate
$$lim_{Ltoinfty}sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}cosleft(2pi ellfrac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L}right).$$



I think the result is $exp(-2pi^2ell^2tau)cos(2piell x)$ but I have no idea in how to prove it.



I tried estimating the binomial with Stirling's aproximation but without success.







real-analysis limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 15 '18 at 21:24









Gabriel RibeiroGabriel Ribeiro

1,454523




1,454523








  • 4




    $begingroup$
    Wow, this is really horrible.
    $endgroup$
    – thesagniksaha
    Dec 15 '18 at 21:25






  • 1




    $begingroup$
    Have you tried replacing the cosine by an complex exponential, using the Newton formula and studying the different factors?
    $endgroup$
    – Mindlack
    Dec 15 '18 at 21:36












  • $begingroup$
    @Mindlack Which formula by Newton?
    $endgroup$
    – Gabriel Ribeiro
    Dec 15 '18 at 22:12










  • $begingroup$
    I meant $(1+z)^n=ldots$.
    $endgroup$
    – Mindlack
    Dec 15 '18 at 22:22






  • 1




    $begingroup$
    Factor out everything that does not depend on $k$.
    $endgroup$
    – Mindlack
    Dec 15 '18 at 22:29














  • 4




    $begingroup$
    Wow, this is really horrible.
    $endgroup$
    – thesagniksaha
    Dec 15 '18 at 21:25






  • 1




    $begingroup$
    Have you tried replacing the cosine by an complex exponential, using the Newton formula and studying the different factors?
    $endgroup$
    – Mindlack
    Dec 15 '18 at 21:36












  • $begingroup$
    @Mindlack Which formula by Newton?
    $endgroup$
    – Gabriel Ribeiro
    Dec 15 '18 at 22:12










  • $begingroup$
    I meant $(1+z)^n=ldots$.
    $endgroup$
    – Mindlack
    Dec 15 '18 at 22:22






  • 1




    $begingroup$
    Factor out everything that does not depend on $k$.
    $endgroup$
    – Mindlack
    Dec 15 '18 at 22:29








4




4




$begingroup$
Wow, this is really horrible.
$endgroup$
– thesagniksaha
Dec 15 '18 at 21:25




$begingroup$
Wow, this is really horrible.
$endgroup$
– thesagniksaha
Dec 15 '18 at 21:25




1




1




$begingroup$
Have you tried replacing the cosine by an complex exponential, using the Newton formula and studying the different factors?
$endgroup$
– Mindlack
Dec 15 '18 at 21:36






$begingroup$
Have you tried replacing the cosine by an complex exponential, using the Newton formula and studying the different factors?
$endgroup$
– Mindlack
Dec 15 '18 at 21:36














$begingroup$
@Mindlack Which formula by Newton?
$endgroup$
– Gabriel Ribeiro
Dec 15 '18 at 22:12




$begingroup$
@Mindlack Which formula by Newton?
$endgroup$
– Gabriel Ribeiro
Dec 15 '18 at 22:12












$begingroup$
I meant $(1+z)^n=ldots$.
$endgroup$
– Mindlack
Dec 15 '18 at 22:22




$begingroup$
I meant $(1+z)^n=ldots$.
$endgroup$
– Mindlack
Dec 15 '18 at 22:22




1




1




$begingroup$
Factor out everything that does not depend on $k$.
$endgroup$
– Mindlack
Dec 15 '18 at 22:29




$begingroup$
Factor out everything that does not depend on $k$.
$endgroup$
– Mindlack
Dec 15 '18 at 22:29










1 Answer
1






active

oldest

votes


















10












$begingroup$

You are correct. We have that
$$begin{aligned}
& sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}cosleft(2pi ellfrac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L}right) \
= &sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}Releft(exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
=& frac{1}{2^{lfloor tau L^2rfloor}}Releft(sum_{k=0}^{lfloor tau L^2rfloor}binom{lfloor tau L^2rfloor}{k}exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
=& frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piellfrac{lfloor xLrfloor -lfloortau L^2rfloor}{L}right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).
end{aligned}$$

Since we are taking the limit as $Ltoinfty$ we have that
$$frac{lfloor xLrfloor -lfloortau L^2rfloor}{L}to x-tau L$$
so we can consider the expression
$$frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piell(x-tau L)right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).$$
Again since we only care about $Ltoinfty$ we can let $Lmapsto L/sqrt{tau}$ so that we are considering the expression
$$begin{aligned}
&frac{1}{2^{L^2}}Releft(expleft(i2piell(x-sqrt{tau} L)right)left(1+expleft(ifrac{4piellsqrt{tau}}{L}right)right)^{L^2}right) \
=&Releft(exp(i2piell x)left(frac{expleft(-ifrac{2piellsqrt{tau}}{L}right)+expleft(ifrac{2piellsqrt{tau}}{L}right)}{2}right)^{L^2}right) \
=&cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}Releft(exp(i2piell x)right) \
=& cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x).
end{aligned}$$

Taking the limit we indeed get
$$lim_{Ltoinfty} cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x)=exp(-2pi^2ell^2tau)cos(2piell x).$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041980%2fhorrible-limit-envolving-floor-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    You are correct. We have that
    $$begin{aligned}
    & sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}cosleft(2pi ellfrac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L}right) \
    = &sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}Releft(exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
    =& frac{1}{2^{lfloor tau L^2rfloor}}Releft(sum_{k=0}^{lfloor tau L^2rfloor}binom{lfloor tau L^2rfloor}{k}exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
    =& frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piellfrac{lfloor xLrfloor -lfloortau L^2rfloor}{L}right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).
    end{aligned}$$

    Since we are taking the limit as $Ltoinfty$ we have that
    $$frac{lfloor xLrfloor -lfloortau L^2rfloor}{L}to x-tau L$$
    so we can consider the expression
    $$frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piell(x-tau L)right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).$$
    Again since we only care about $Ltoinfty$ we can let $Lmapsto L/sqrt{tau}$ so that we are considering the expression
    $$begin{aligned}
    &frac{1}{2^{L^2}}Releft(expleft(i2piell(x-sqrt{tau} L)right)left(1+expleft(ifrac{4piellsqrt{tau}}{L}right)right)^{L^2}right) \
    =&Releft(exp(i2piell x)left(frac{expleft(-ifrac{2piellsqrt{tau}}{L}right)+expleft(ifrac{2piellsqrt{tau}}{L}right)}{2}right)^{L^2}right) \
    =&cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}Releft(exp(i2piell x)right) \
    =& cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x).
    end{aligned}$$

    Taking the limit we indeed get
    $$lim_{Ltoinfty} cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x)=exp(-2pi^2ell^2tau)cos(2piell x).$$






    share|cite|improve this answer









    $endgroup$


















      10












      $begingroup$

      You are correct. We have that
      $$begin{aligned}
      & sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}cosleft(2pi ellfrac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L}right) \
      = &sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}Releft(exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
      =& frac{1}{2^{lfloor tau L^2rfloor}}Releft(sum_{k=0}^{lfloor tau L^2rfloor}binom{lfloor tau L^2rfloor}{k}exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
      =& frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piellfrac{lfloor xLrfloor -lfloortau L^2rfloor}{L}right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).
      end{aligned}$$

      Since we are taking the limit as $Ltoinfty$ we have that
      $$frac{lfloor xLrfloor -lfloortau L^2rfloor}{L}to x-tau L$$
      so we can consider the expression
      $$frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piell(x-tau L)right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).$$
      Again since we only care about $Ltoinfty$ we can let $Lmapsto L/sqrt{tau}$ so that we are considering the expression
      $$begin{aligned}
      &frac{1}{2^{L^2}}Releft(expleft(i2piell(x-sqrt{tau} L)right)left(1+expleft(ifrac{4piellsqrt{tau}}{L}right)right)^{L^2}right) \
      =&Releft(exp(i2piell x)left(frac{expleft(-ifrac{2piellsqrt{tau}}{L}right)+expleft(ifrac{2piellsqrt{tau}}{L}right)}{2}right)^{L^2}right) \
      =&cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}Releft(exp(i2piell x)right) \
      =& cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x).
      end{aligned}$$

      Taking the limit we indeed get
      $$lim_{Ltoinfty} cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x)=exp(-2pi^2ell^2tau)cos(2piell x).$$






      share|cite|improve this answer









      $endgroup$
















        10












        10








        10





        $begingroup$

        You are correct. We have that
        $$begin{aligned}
        & sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}cosleft(2pi ellfrac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L}right) \
        = &sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}Releft(exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
        =& frac{1}{2^{lfloor tau L^2rfloor}}Releft(sum_{k=0}^{lfloor tau L^2rfloor}binom{lfloor tau L^2rfloor}{k}exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
        =& frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piellfrac{lfloor xLrfloor -lfloortau L^2rfloor}{L}right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).
        end{aligned}$$

        Since we are taking the limit as $Ltoinfty$ we have that
        $$frac{lfloor xLrfloor -lfloortau L^2rfloor}{L}to x-tau L$$
        so we can consider the expression
        $$frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piell(x-tau L)right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).$$
        Again since we only care about $Ltoinfty$ we can let $Lmapsto L/sqrt{tau}$ so that we are considering the expression
        $$begin{aligned}
        &frac{1}{2^{L^2}}Releft(expleft(i2piell(x-sqrt{tau} L)right)left(1+expleft(ifrac{4piellsqrt{tau}}{L}right)right)^{L^2}right) \
        =&Releft(exp(i2piell x)left(frac{expleft(-ifrac{2piellsqrt{tau}}{L}right)+expleft(ifrac{2piellsqrt{tau}}{L}right)}{2}right)^{L^2}right) \
        =&cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}Releft(exp(i2piell x)right) \
        =& cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x).
        end{aligned}$$

        Taking the limit we indeed get
        $$lim_{Ltoinfty} cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x)=exp(-2pi^2ell^2tau)cos(2piell x).$$






        share|cite|improve this answer









        $endgroup$



        You are correct. We have that
        $$begin{aligned}
        & sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}cosleft(2pi ellfrac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L}right) \
        = &sum_{k=0}^{lfloor tau L^2rfloor}frac{1}{2^{lfloor tau L^2rfloor}}binom{lfloor tau L^2rfloor}{k}Releft(exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
        =& frac{1}{2^{lfloor tau L^2rfloor}}Releft(sum_{k=0}^{lfloor tau L^2rfloor}binom{lfloor tau L^2rfloor}{k}exp(i2piell frac{lfloor xLrfloor-lfloor tau L^2rfloor+2k}{L})right) \
        =& frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piellfrac{lfloor xLrfloor -lfloortau L^2rfloor}{L}right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).
        end{aligned}$$

        Since we are taking the limit as $Ltoinfty$ we have that
        $$frac{lfloor xLrfloor -lfloortau L^2rfloor}{L}to x-tau L$$
        so we can consider the expression
        $$frac{1}{2^{lfloor tau L^2rfloor}}Releft(expleft(i2piell(x-tau L)right)left(1+expleft(ifrac{4piell}{L}right)right)^{lfloor tau L^2rfloor}right).$$
        Again since we only care about $Ltoinfty$ we can let $Lmapsto L/sqrt{tau}$ so that we are considering the expression
        $$begin{aligned}
        &frac{1}{2^{L^2}}Releft(expleft(i2piell(x-sqrt{tau} L)right)left(1+expleft(ifrac{4piellsqrt{tau}}{L}right)right)^{L^2}right) \
        =&Releft(exp(i2piell x)left(frac{expleft(-ifrac{2piellsqrt{tau}}{L}right)+expleft(ifrac{2piellsqrt{tau}}{L}right)}{2}right)^{L^2}right) \
        =&cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}Releft(exp(i2piell x)right) \
        =& cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x).
        end{aligned}$$

        Taking the limit we indeed get
        $$lim_{Ltoinfty} cosleft(frac{2piellsqrt{tau}}{L}right)^{L^2}cos(2piell x)=exp(-2pi^2ell^2tau)cos(2piell x).$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 16 '18 at 0:27









        Will FisherWill Fisher

        4,04811032




        4,04811032






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3041980%2fhorrible-limit-envolving-floor-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Le Mesnil-Réaume

            Ida-Boy-Ed-Garten