A Triple integral












1












$begingroup$


While trying to obtain a Green's function for a PDE,I stumbled upon this integral



$displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z}$



How can I evaluate this triple integral?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    While trying to obtain a Green's function for a PDE,I stumbled upon this integral



    $displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z}$



    How can I evaluate this triple integral?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      While trying to obtain a Green's function for a PDE,I stumbled upon this integral



      $displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z}$



      How can I evaluate this triple integral?










      share|cite|improve this question











      $endgroup$




      While trying to obtain a Green's function for a PDE,I stumbled upon this integral



      $displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z}$



      How can I evaluate this triple integral?







      fourier-transform greens-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 25 '18 at 11:18

























      asked Dec 23 '18 at 17:40







      user628607





























          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform



          $$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
          \
          &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
          \
          &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
          \
          &= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
          \
          &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
          \
          &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
          \
          &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
          \
          &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
          \
          &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
          \
          &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
          \
          &= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
          \
          end{align*}$$



          if I didn't make an error.






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050546%2fa-triple-integral%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown
























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform



            $$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
            \
            &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
            \
            &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
            \
            &= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
            \
            &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
            \
            &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
            \
            &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
            \
            &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
            \
            &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
            \
            &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
            \
            &= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
            \
            end{align*}$$



            if I didn't make an error.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform



              $$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
              \
              &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
              \
              &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
              \
              &= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
              \
              &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
              \
              &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
              \
              &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
              \
              &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
              \
              &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
              \
              &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
              \
              &= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
              \
              end{align*}$$



              if I didn't make an error.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform



                $$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
                \
                &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
                \
                &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
                \
                &= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
                \
                &= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
                \
                end{align*}$$



                if I didn't make an error.






                share|cite|improve this answer











                $endgroup$



                You can use the Inverse Fourier Transform to evaluate the 3 integrals. In the derivation below, I have only used the properties and transform pairs listed on this page: https://en.wikipedia.org/wiki/Fourier_transform



                $$begin{align*}&displaystyleint_{-infty}^{infty}int_{-infty}^{infty}int_{-infty}^{infty}frac{e^{i(s_{x}x+s_{y}y+s_{z}z)}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{x}ds_{y}ds_{z} \
                \
                &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} int_{-infty}^{infty}frac{e^{is_{z}z}}{s_{x}^{2}+s_{y}^{2}+2as_{z}-2a^{2}}ds_{z}ds_{y}ds_{x} \
                \
                &= int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space 2pidfrac{i}{2a}dfrac{1}{2}spacemathscr{F}^{-1}left{frac{2}{ileft(s_{z} -left[a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right] right)}right}ds_{y}ds_{x}\
                \
                &= dfrac{ipi}{2a} int_{-infty}^{infty} e^{i s_{x}x} int_{-infty}^{infty} e^{i s_{y}y} space mathrm{sgn}(z) space e^{izleft(a - frac{s_{x}^{2}+s_{y}^{2}}{2a}right) } ds_{y}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{y}^{2}} space e^{i s_{y}y} space ds_{y}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x} int_{-infty}^{infty} 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} space frac{1}{2pi}e^{i s_{y}y} space ds_{y}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a/2z}{pi}}mathscr{F}^{-1}left{sqrt{frac{pi}{a/2z}}e^{-ileft(frac{s_{y}^{2}}{4(a/2z)}-frac{pi}{4}right)} right}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2}ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} int_{-infty}^{infty} e^{-ifrac{z}{2a}s_{x}^{2}} space e^{i s_{x}x}space ds_{x}\
                \
                &= dfrac{ipi}{2a} mathrm{sgn}(z) space e^{iaz} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}y^2} space 2pi e^{-ifrac{pi}{4}}sqrt{frac{a}{2pi z}} e^{ifrac{a}{2z}x^2} \
                \
                &= pi^2dfrac{mathrm{sgn}(z)}{z} e^{iaz} space e^{ifrac{a}{2z}left(x^2+y^2right)}\
                \
                end{align*}$$



                if I didn't make an error.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 23 '18 at 23:37

























                answered Dec 23 '18 at 23:31









                Andy WallsAndy Walls

                1,779139




                1,779139






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050546%2fa-triple-integral%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Le Mesnil-Réaume

                    Ida-Boy-Ed-Garten