Simplifying addition of polar complex conjugate exponents in the denominator











up vote
0
down vote

favorite












From Schuam’s Outlines, Digital Signal Processing, Second Edition, 2012, page 44:



Book claims that solving this system of equations:



$$left[begin{matrix}1&1\e^{i pi/3}&e^{-i pi/3}\end{matrix}right]left[begin{matrix}A\B\end{matrix}right]=left[begin{matrix}0.5\0.75\end{matrix}right]$$



Yields:



$$left[begin{matrix}A\B\end{matrix}right]=ifrac{sqrt3}{3}left[begin{matrix}frac{1}{2}e^{-i pi/3}-frac{3}{4}\-frac{1}{2}e^{i pi/3}+frac{3}{4}\end{matrix}right]$$



I’m curious about the technique used to deal with the “complex conjugates” such that it yeilds that result of the book. When I try it, I get stuck when it comes to similfying the numerator and denominator down to book’s solution.



For Example:



$$A=0.5 – B$$
$${A e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$${(0.5-B) e}^{i pi/3} + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})-B (e^{i pi/3}) + B e^{-i pi/3}=0.75$$
$$(0.5)(e^{i pi/3})+(B)left(- e^{i pi/3} + e^{-i pi/3} right)=0.75$$
$$Bleft( e^{-i pi/3}- e^{i pi/3}right)=0.75 - (0.5)(e^{i pi/3})$$
$$B=frac{0.75 -(0.5)(e^{i pi/3})}{e^{-i pi/3}- e^{i pi/3}}$$



(At this point, I’m thinking that I need to multiply the numerator and denominator by the complex conjugate of the denominator to remove the complex portion from the denominator… however, I’m not really sure…is there some short cut you an take to handle this all in polar form?)



How can I convert my result for B into the result the book claims:



$$B=ifrac{sqrt3}{3}left(-frac{1}{2}e^{jpi/3}+frac{3}{4}right)$$










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    From Schuam’s Outlines, Digital Signal Processing, Second Edition, 2012, page 44:



    Book claims that solving this system of equations:



    $$left[begin{matrix}1&1\e^{i pi/3}&e^{-i pi/3}\end{matrix}right]left[begin{matrix}A\B\end{matrix}right]=left[begin{matrix}0.5\0.75\end{matrix}right]$$



    Yields:



    $$left[begin{matrix}A\B\end{matrix}right]=ifrac{sqrt3}{3}left[begin{matrix}frac{1}{2}e^{-i pi/3}-frac{3}{4}\-frac{1}{2}e^{i pi/3}+frac{3}{4}\end{matrix}right]$$



    I’m curious about the technique used to deal with the “complex conjugates” such that it yeilds that result of the book. When I try it, I get stuck when it comes to similfying the numerator and denominator down to book’s solution.



    For Example:



    $$A=0.5 – B$$
    $${A e}^{i pi/3} + B e^{-i pi/3}=0.75$$
    $${(0.5-B) e}^{i pi/3} + B e^{-i pi/3}=0.75$$
    $$(0.5)(e^{i pi/3})-B (e^{i pi/3}) + B e^{-i pi/3}=0.75$$
    $$(0.5)(e^{i pi/3})+(B)left(- e^{i pi/3} + e^{-i pi/3} right)=0.75$$
    $$Bleft( e^{-i pi/3}- e^{i pi/3}right)=0.75 - (0.5)(e^{i pi/3})$$
    $$B=frac{0.75 -(0.5)(e^{i pi/3})}{e^{-i pi/3}- e^{i pi/3}}$$



    (At this point, I’m thinking that I need to multiply the numerator and denominator by the complex conjugate of the denominator to remove the complex portion from the denominator… however, I’m not really sure…is there some short cut you an take to handle this all in polar form?)



    How can I convert my result for B into the result the book claims:



    $$B=ifrac{sqrt3}{3}left(-frac{1}{2}e^{jpi/3}+frac{3}{4}right)$$










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      From Schuam’s Outlines, Digital Signal Processing, Second Edition, 2012, page 44:



      Book claims that solving this system of equations:



      $$left[begin{matrix}1&1\e^{i pi/3}&e^{-i pi/3}\end{matrix}right]left[begin{matrix}A\B\end{matrix}right]=left[begin{matrix}0.5\0.75\end{matrix}right]$$



      Yields:



      $$left[begin{matrix}A\B\end{matrix}right]=ifrac{sqrt3}{3}left[begin{matrix}frac{1}{2}e^{-i pi/3}-frac{3}{4}\-frac{1}{2}e^{i pi/3}+frac{3}{4}\end{matrix}right]$$



      I’m curious about the technique used to deal with the “complex conjugates” such that it yeilds that result of the book. When I try it, I get stuck when it comes to similfying the numerator and denominator down to book’s solution.



      For Example:



      $$A=0.5 – B$$
      $${A e}^{i pi/3} + B e^{-i pi/3}=0.75$$
      $${(0.5-B) e}^{i pi/3} + B e^{-i pi/3}=0.75$$
      $$(0.5)(e^{i pi/3})-B (e^{i pi/3}) + B e^{-i pi/3}=0.75$$
      $$(0.5)(e^{i pi/3})+(B)left(- e^{i pi/3} + e^{-i pi/3} right)=0.75$$
      $$Bleft( e^{-i pi/3}- e^{i pi/3}right)=0.75 - (0.5)(e^{i pi/3})$$
      $$B=frac{0.75 -(0.5)(e^{i pi/3})}{e^{-i pi/3}- e^{i pi/3}}$$



      (At this point, I’m thinking that I need to multiply the numerator and denominator by the complex conjugate of the denominator to remove the complex portion from the denominator… however, I’m not really sure…is there some short cut you an take to handle this all in polar form?)



      How can I convert my result for B into the result the book claims:



      $$B=ifrac{sqrt3}{3}left(-frac{1}{2}e^{jpi/3}+frac{3}{4}right)$$










      share|cite|improve this question













      From Schuam’s Outlines, Digital Signal Processing, Second Edition, 2012, page 44:



      Book claims that solving this system of equations:



      $$left[begin{matrix}1&1\e^{i pi/3}&e^{-i pi/3}\end{matrix}right]left[begin{matrix}A\B\end{matrix}right]=left[begin{matrix}0.5\0.75\end{matrix}right]$$



      Yields:



      $$left[begin{matrix}A\B\end{matrix}right]=ifrac{sqrt3}{3}left[begin{matrix}frac{1}{2}e^{-i pi/3}-frac{3}{4}\-frac{1}{2}e^{i pi/3}+frac{3}{4}\end{matrix}right]$$



      I’m curious about the technique used to deal with the “complex conjugates” such that it yeilds that result of the book. When I try it, I get stuck when it comes to similfying the numerator and denominator down to book’s solution.



      For Example:



      $$A=0.5 – B$$
      $${A e}^{i pi/3} + B e^{-i pi/3}=0.75$$
      $${(0.5-B) e}^{i pi/3} + B e^{-i pi/3}=0.75$$
      $$(0.5)(e^{i pi/3})-B (e^{i pi/3}) + B e^{-i pi/3}=0.75$$
      $$(0.5)(e^{i pi/3})+(B)left(- e^{i pi/3} + e^{-i pi/3} right)=0.75$$
      $$Bleft( e^{-i pi/3}- e^{i pi/3}right)=0.75 - (0.5)(e^{i pi/3})$$
      $$B=frac{0.75 -(0.5)(e^{i pi/3})}{e^{-i pi/3}- e^{i pi/3}}$$



      (At this point, I’m thinking that I need to multiply the numerator and denominator by the complex conjugate of the denominator to remove the complex portion from the denominator… however, I’m not really sure…is there some short cut you an take to handle this all in polar form?)



      How can I convert my result for B into the result the book claims:



      $$B=ifrac{sqrt3}{3}left(-frac{1}{2}e^{jpi/3}+frac{3}{4}right)$$







      complex-numbers systems-of-equations polar-coordinates






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 18 at 17:41









      Bill Moore

      1176




      1176






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives



          $$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$



          Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
          $$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$



          Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
          Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
          $e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
          $$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003845%2fsimplifying-addition-of-polar-complex-conjugate-exponents-in-the-denominator%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives



            $$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$



            Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
            $$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$



            Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
            Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
            $e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
            $$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$






            share|cite|improve this answer



























              up vote
              1
              down vote



              accepted










              Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives



              $$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$



              Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
              $$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$



              Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
              Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
              $e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
              $$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$






              share|cite|improve this answer

























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives



                $$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$



                Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
                $$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$



                Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
                Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
                $e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
                $$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$






                share|cite|improve this answer














                Picking $frac{1}{e^{-ipi /3}-e^{ipi /3}}$ and multiply and divide it by the complex conjugate of the denominator. This gives



                $$frac{e^{ipi /3}-e^{-ipi /3}}{(e^{-ipi /3}-e^{ipi /3})*(e^{ipi /3}-e^{-ipi /3})}=frac{e^{ipi /3}-e^{-ipi /3}}{1-e^{-2ipi /3}-e^{2ipi /3}+1}=frac{e^{ipi /3}-e^{-ipi /3}}{1-(e^{-2ipi /3}+e^{2ipi /3})+1}$$



                Using Moivre's relationship we know that $cos(theta)=frac{e^{itheta}+e^{-itheta}}2$ and hence:
                $$e^{-2ipi /3}+e^{2ipi /3}=2cos(pi/3)=-1$$



                Hence we have the last expression equal to: $$frac{e^{ipi /3}-e^{-ipi /3}}{3}$$
                Using the Moivre's relationship again we have: $sin(theta)=frac{e^{itheta}-e^{-itheta}}{2i}$ and hence
                $e^{ipi /3}-e^{-ipi /3}=2isin(pi/3)$ which lead us to the final result:
                $$frac{2i sin(pi/3)}{3}=frac{isqrt 3}{3}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 18 at 21:53

























                answered Nov 18 at 21:45









                Ramiro Scorolli

                60313




                60313






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003845%2fsimplifying-addition-of-polar-complex-conjugate-exponents-in-the-denominator%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Le Mesnil-Réaume

                    Ida-Boy-Ed-Garten