Finding the Upper Bound of the difference between the Inverse of the 2 matrix
$begingroup$
Given that $ K = A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1}$, we need to find the upper bound of $K$ where matrix $A = C + Irho$ and $ B = C_{x} + Irho $ has dimension $ntimes n$, $ C = RDR^{T}$ where $D$ is a diagonal matrix whose eigenvalues are in descending order and $C$ is a matrix of full rank and $C_{x}$ is an approximated matrix and $rho$ is a constant. If we partition $C$ as
begin{equation}
C =
left({begin{array}{cc} R_{m} & R_{(n-m)} end{array}}right)
left(begin{array}{cc} D_{mm} & 0\ 0 & D_{(n-m)(n-m)} end{array}right)
left(begin{array}{c} R'_m \ R'_{(n-m)} end{array}right)
end{equation}
Where by Eckart - Young theorem $ C_{x} = R_{m}D_{m}R_{m}^T$.
Is it right to proceed this way?
First, break $K$ into 2 parts, thus $ A^{-1} - B^{-1} $ and $ A^{-1} - A^{-1}BA^{-1} $ and using the fact that
$$ parallel A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1} parallel_F ;leq ;parallel A^{-1} - B^{-1}parallel_F + parallel A^{-1} - A^{-1}BA^{-1} parallel_{F} $$
And considering first
begin{eqnarray}
parallel A^{-1} - B^{-1}parallel_F ^2 & = & parallel ( C + rho)^{-1} - (C_x + rho)^{-1}parallel_F ^2 \
& = & parallel rho^{-2}R_{n-m}(D_{n-m} + rho^{-1})^{-1}R_{n-m}^Tparallel_F^2 quad text { That is by substitution }\
& = & rho^{-2}{tr bigg ( R_{n-m}(D_{n-m}^{-2} +rho^{-1})^{-2}R_{n-m}^{T} bigg )}\
& = & rho^{-2} { sum_{m+1}^{n} bigg(frac{1}{lambda_{i}^2} + frac{1}{rho}bigg)^2}\
end{eqnarray}
Thus the above was achieved by using the Woodbury identity and using the fact that $R_{n-m}^{T}R_{n-m} =I $.
Before I proceed, is this idea correct ? If not can anyone guide me on how to start? And what about the second part?
matrices matrix-calculus matrix-decomposition matrix-rank
$endgroup$
add a comment |
$begingroup$
Given that $ K = A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1}$, we need to find the upper bound of $K$ where matrix $A = C + Irho$ and $ B = C_{x} + Irho $ has dimension $ntimes n$, $ C = RDR^{T}$ where $D$ is a diagonal matrix whose eigenvalues are in descending order and $C$ is a matrix of full rank and $C_{x}$ is an approximated matrix and $rho$ is a constant. If we partition $C$ as
begin{equation}
C =
left({begin{array}{cc} R_{m} & R_{(n-m)} end{array}}right)
left(begin{array}{cc} D_{mm} & 0\ 0 & D_{(n-m)(n-m)} end{array}right)
left(begin{array}{c} R'_m \ R'_{(n-m)} end{array}right)
end{equation}
Where by Eckart - Young theorem $ C_{x} = R_{m}D_{m}R_{m}^T$.
Is it right to proceed this way?
First, break $K$ into 2 parts, thus $ A^{-1} - B^{-1} $ and $ A^{-1} - A^{-1}BA^{-1} $ and using the fact that
$$ parallel A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1} parallel_F ;leq ;parallel A^{-1} - B^{-1}parallel_F + parallel A^{-1} - A^{-1}BA^{-1} parallel_{F} $$
And considering first
begin{eqnarray}
parallel A^{-1} - B^{-1}parallel_F ^2 & = & parallel ( C + rho)^{-1} - (C_x + rho)^{-1}parallel_F ^2 \
& = & parallel rho^{-2}R_{n-m}(D_{n-m} + rho^{-1})^{-1}R_{n-m}^Tparallel_F^2 quad text { That is by substitution }\
& = & rho^{-2}{tr bigg ( R_{n-m}(D_{n-m}^{-2} +rho^{-1})^{-2}R_{n-m}^{T} bigg )}\
& = & rho^{-2} { sum_{m+1}^{n} bigg(frac{1}{lambda_{i}^2} + frac{1}{rho}bigg)^2}\
end{eqnarray}
Thus the above was achieved by using the Woodbury identity and using the fact that $R_{n-m}^{T}R_{n-m} =I $.
Before I proceed, is this idea correct ? If not can anyone guide me on how to start? And what about the second part?
matrices matrix-calculus matrix-decomposition matrix-rank
$endgroup$
add a comment |
$begingroup$
Given that $ K = A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1}$, we need to find the upper bound of $K$ where matrix $A = C + Irho$ and $ B = C_{x} + Irho $ has dimension $ntimes n$, $ C = RDR^{T}$ where $D$ is a diagonal matrix whose eigenvalues are in descending order and $C$ is a matrix of full rank and $C_{x}$ is an approximated matrix and $rho$ is a constant. If we partition $C$ as
begin{equation}
C =
left({begin{array}{cc} R_{m} & R_{(n-m)} end{array}}right)
left(begin{array}{cc} D_{mm} & 0\ 0 & D_{(n-m)(n-m)} end{array}right)
left(begin{array}{c} R'_m \ R'_{(n-m)} end{array}right)
end{equation}
Where by Eckart - Young theorem $ C_{x} = R_{m}D_{m}R_{m}^T$.
Is it right to proceed this way?
First, break $K$ into 2 parts, thus $ A^{-1} - B^{-1} $ and $ A^{-1} - A^{-1}BA^{-1} $ and using the fact that
$$ parallel A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1} parallel_F ;leq ;parallel A^{-1} - B^{-1}parallel_F + parallel A^{-1} - A^{-1}BA^{-1} parallel_{F} $$
And considering first
begin{eqnarray}
parallel A^{-1} - B^{-1}parallel_F ^2 & = & parallel ( C + rho)^{-1} - (C_x + rho)^{-1}parallel_F ^2 \
& = & parallel rho^{-2}R_{n-m}(D_{n-m} + rho^{-1})^{-1}R_{n-m}^Tparallel_F^2 quad text { That is by substitution }\
& = & rho^{-2}{tr bigg ( R_{n-m}(D_{n-m}^{-2} +rho^{-1})^{-2}R_{n-m}^{T} bigg )}\
& = & rho^{-2} { sum_{m+1}^{n} bigg(frac{1}{lambda_{i}^2} + frac{1}{rho}bigg)^2}\
end{eqnarray}
Thus the above was achieved by using the Woodbury identity and using the fact that $R_{n-m}^{T}R_{n-m} =I $.
Before I proceed, is this idea correct ? If not can anyone guide me on how to start? And what about the second part?
matrices matrix-calculus matrix-decomposition matrix-rank
$endgroup$
Given that $ K = A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1}$, we need to find the upper bound of $K$ where matrix $A = C + Irho$ and $ B = C_{x} + Irho $ has dimension $ntimes n$, $ C = RDR^{T}$ where $D$ is a diagonal matrix whose eigenvalues are in descending order and $C$ is a matrix of full rank and $C_{x}$ is an approximated matrix and $rho$ is a constant. If we partition $C$ as
begin{equation}
C =
left({begin{array}{cc} R_{m} & R_{(n-m)} end{array}}right)
left(begin{array}{cc} D_{mm} & 0\ 0 & D_{(n-m)(n-m)} end{array}right)
left(begin{array}{c} R'_m \ R'_{(n-m)} end{array}right)
end{equation}
Where by Eckart - Young theorem $ C_{x} = R_{m}D_{m}R_{m}^T$.
Is it right to proceed this way?
First, break $K$ into 2 parts, thus $ A^{-1} - B^{-1} $ and $ A^{-1} - A^{-1}BA^{-1} $ and using the fact that
$$ parallel A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1} parallel_F ;leq ;parallel A^{-1} - B^{-1}parallel_F + parallel A^{-1} - A^{-1}BA^{-1} parallel_{F} $$
And considering first
begin{eqnarray}
parallel A^{-1} - B^{-1}parallel_F ^2 & = & parallel ( C + rho)^{-1} - (C_x + rho)^{-1}parallel_F ^2 \
& = & parallel rho^{-2}R_{n-m}(D_{n-m} + rho^{-1})^{-1}R_{n-m}^Tparallel_F^2 quad text { That is by substitution }\
& = & rho^{-2}{tr bigg ( R_{n-m}(D_{n-m}^{-2} +rho^{-1})^{-2}R_{n-m}^{T} bigg )}\
& = & rho^{-2} { sum_{m+1}^{n} bigg(frac{1}{lambda_{i}^2} + frac{1}{rho}bigg)^2}\
end{eqnarray}
Thus the above was achieved by using the Woodbury identity and using the fact that $R_{n-m}^{T}R_{n-m} =I $.
Before I proceed, is this idea correct ? If not can anyone guide me on how to start? And what about the second part?
matrices matrix-calculus matrix-decomposition matrix-rank
matrices matrix-calculus matrix-decomposition matrix-rank
asked Dec 8 '18 at 10:02
KsmithKsmith
213
213
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030909%2ffinding-the-upper-bound-of-the-difference-between-the-inverse-of-the-2-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030909%2ffinding-the-upper-bound-of-the-difference-between-the-inverse-of-the-2-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown