Finding the joint mgf of two random variables given conditions
$begingroup$
Let $X_{1}$ and $X_{2}$ be two independently and identically
distributed random variables with a common
$$f(x) = frac{1}{sqrt{2pi}} cdot text{exp}(-x^{2})$$
for all $x in (-infty, infty)$.
Let $Y_{1} = aX_{1} + bX_{2}$ and $Y_{2} = cX_{1} + dX_{2}$ where parameters $a, b, c, d$ satisfy $a^2 + b^2 = 1$ and $c^2 + d^2 =
1$ and $ac + bd = 0$. Find the joint mgf of $(Y_{1}, Y_{2})$.
I need help solving this problem. So we want to find
$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{s(aX_{1} + bX_{2})} cdot e^{t(cX_{1} + dX_{2})}].$$
I don't think we can separate this into the product of two expectations because that would assume $Y_{1}$ and $Y_{2}$ are independent. Also, we can easily find the joint pdf of $X_{1}$ and $X_{2}$, which is just $f(x)^{2}$. I'm just not sure about how to do this problem, and I can't make use of the conditions.
EDIT: We can write
$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{(sa + tc)X_{1}}] cdot mathbb{E}[e^{(sb + td)X_{2}}].$$
First we compute $mathbb{E}[e^{(sa + tc)X_{1}}]$:
$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{1}{sqrt{2pi}} int_{-infty}^{infty} e^{(sa + tc)x_{1} - x_{1}^{2}} mathop{dx_{1}} $$
EDIT 2: Using an integration table, we get
$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{e^{(sa + tc)^{2}}}{sqrt{2}}$$
Similarly,
$$mathbb{E}[e^{(sb + td)X_{2}}] = frac{e^{(sb + td)^{2}}}{sqrt{2}}$$
So, the moment generating function is given by
$$frac{e^{(sb + td)^{2}}}{sqrt{2}} frac{e^{(sa + tc)^{2}}}{sqrt{2}} = frac{e^{s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2}}{2}$$
But, the exponent of $e$ can be rewritten as
$$s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2 = s^{2}(a^{2} + b^{2}) + t^2(c^2 + d^2) + 2st(ac + bd) = s^2 + t^2. $$
So, our moment generating function is given by
$$e^{s^2 + t^2}/2 $$
probability probability-theory probability-distributions
$endgroup$
add a comment |
$begingroup$
Let $X_{1}$ and $X_{2}$ be two independently and identically
distributed random variables with a common
$$f(x) = frac{1}{sqrt{2pi}} cdot text{exp}(-x^{2})$$
for all $x in (-infty, infty)$.
Let $Y_{1} = aX_{1} + bX_{2}$ and $Y_{2} = cX_{1} + dX_{2}$ where parameters $a, b, c, d$ satisfy $a^2 + b^2 = 1$ and $c^2 + d^2 =
1$ and $ac + bd = 0$. Find the joint mgf of $(Y_{1}, Y_{2})$.
I need help solving this problem. So we want to find
$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{s(aX_{1} + bX_{2})} cdot e^{t(cX_{1} + dX_{2})}].$$
I don't think we can separate this into the product of two expectations because that would assume $Y_{1}$ and $Y_{2}$ are independent. Also, we can easily find the joint pdf of $X_{1}$ and $X_{2}$, which is just $f(x)^{2}$. I'm just not sure about how to do this problem, and I can't make use of the conditions.
EDIT: We can write
$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{(sa + tc)X_{1}}] cdot mathbb{E}[e^{(sb + td)X_{2}}].$$
First we compute $mathbb{E}[e^{(sa + tc)X_{1}}]$:
$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{1}{sqrt{2pi}} int_{-infty}^{infty} e^{(sa + tc)x_{1} - x_{1}^{2}} mathop{dx_{1}} $$
EDIT 2: Using an integration table, we get
$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{e^{(sa + tc)^{2}}}{sqrt{2}}$$
Similarly,
$$mathbb{E}[e^{(sb + td)X_{2}}] = frac{e^{(sb + td)^{2}}}{sqrt{2}}$$
So, the moment generating function is given by
$$frac{e^{(sb + td)^{2}}}{sqrt{2}} frac{e^{(sa + tc)^{2}}}{sqrt{2}} = frac{e^{s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2}}{2}$$
But, the exponent of $e$ can be rewritten as
$$s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2 = s^{2}(a^{2} + b^{2}) + t^2(c^2 + d^2) + 2st(ac + bd) = s^2 + t^2. $$
So, our moment generating function is given by
$$e^{s^2 + t^2}/2 $$
probability probability-theory probability-distributions
$endgroup$
$begingroup$
Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
$endgroup$
– Tki Deneb
Dec 16 '18 at 19:50
$begingroup$
@TkiDeneb think i figured it out ur way. can u check?
$endgroup$
– user614735
Dec 16 '18 at 20:18
$begingroup$
I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
$endgroup$
– Tki Deneb
Dec 16 '18 at 20:46
$begingroup$
okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
$endgroup$
– user614735
Dec 16 '18 at 20:51
add a comment |
$begingroup$
Let $X_{1}$ and $X_{2}$ be two independently and identically
distributed random variables with a common
$$f(x) = frac{1}{sqrt{2pi}} cdot text{exp}(-x^{2})$$
for all $x in (-infty, infty)$.
Let $Y_{1} = aX_{1} + bX_{2}$ and $Y_{2} = cX_{1} + dX_{2}$ where parameters $a, b, c, d$ satisfy $a^2 + b^2 = 1$ and $c^2 + d^2 =
1$ and $ac + bd = 0$. Find the joint mgf of $(Y_{1}, Y_{2})$.
I need help solving this problem. So we want to find
$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{s(aX_{1} + bX_{2})} cdot e^{t(cX_{1} + dX_{2})}].$$
I don't think we can separate this into the product of two expectations because that would assume $Y_{1}$ and $Y_{2}$ are independent. Also, we can easily find the joint pdf of $X_{1}$ and $X_{2}$, which is just $f(x)^{2}$. I'm just not sure about how to do this problem, and I can't make use of the conditions.
EDIT: We can write
$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{(sa + tc)X_{1}}] cdot mathbb{E}[e^{(sb + td)X_{2}}].$$
First we compute $mathbb{E}[e^{(sa + tc)X_{1}}]$:
$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{1}{sqrt{2pi}} int_{-infty}^{infty} e^{(sa + tc)x_{1} - x_{1}^{2}} mathop{dx_{1}} $$
EDIT 2: Using an integration table, we get
$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{e^{(sa + tc)^{2}}}{sqrt{2}}$$
Similarly,
$$mathbb{E}[e^{(sb + td)X_{2}}] = frac{e^{(sb + td)^{2}}}{sqrt{2}}$$
So, the moment generating function is given by
$$frac{e^{(sb + td)^{2}}}{sqrt{2}} frac{e^{(sa + tc)^{2}}}{sqrt{2}} = frac{e^{s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2}}{2}$$
But, the exponent of $e$ can be rewritten as
$$s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2 = s^{2}(a^{2} + b^{2}) + t^2(c^2 + d^2) + 2st(ac + bd) = s^2 + t^2. $$
So, our moment generating function is given by
$$e^{s^2 + t^2}/2 $$
probability probability-theory probability-distributions
$endgroup$
Let $X_{1}$ and $X_{2}$ be two independently and identically
distributed random variables with a common
$$f(x) = frac{1}{sqrt{2pi}} cdot text{exp}(-x^{2})$$
for all $x in (-infty, infty)$.
Let $Y_{1} = aX_{1} + bX_{2}$ and $Y_{2} = cX_{1} + dX_{2}$ where parameters $a, b, c, d$ satisfy $a^2 + b^2 = 1$ and $c^2 + d^2 =
1$ and $ac + bd = 0$. Find the joint mgf of $(Y_{1}, Y_{2})$.
I need help solving this problem. So we want to find
$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{s(aX_{1} + bX_{2})} cdot e^{t(cX_{1} + dX_{2})}].$$
I don't think we can separate this into the product of two expectations because that would assume $Y_{1}$ and $Y_{2}$ are independent. Also, we can easily find the joint pdf of $X_{1}$ and $X_{2}$, which is just $f(x)^{2}$. I'm just not sure about how to do this problem, and I can't make use of the conditions.
EDIT: We can write
$$mathbb{E}[e^{sY_{1} + tY_{2}}] = mathbb{E}[e^{(sa + tc)X_{1}}] cdot mathbb{E}[e^{(sb + td)X_{2}}].$$
First we compute $mathbb{E}[e^{(sa + tc)X_{1}}]$:
$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{1}{sqrt{2pi}} int_{-infty}^{infty} e^{(sa + tc)x_{1} - x_{1}^{2}} mathop{dx_{1}} $$
EDIT 2: Using an integration table, we get
$$mathbb{E}[e^{(sa + tc)X_{1}}] = frac{e^{(sa + tc)^{2}}}{sqrt{2}}$$
Similarly,
$$mathbb{E}[e^{(sb + td)X_{2}}] = frac{e^{(sb + td)^{2}}}{sqrt{2}}$$
So, the moment generating function is given by
$$frac{e^{(sb + td)^{2}}}{sqrt{2}} frac{e^{(sa + tc)^{2}}}{sqrt{2}} = frac{e^{s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2}}{2}$$
But, the exponent of $e$ can be rewritten as
$$s^2b^2 + 2sbtd + t^2d^2 + s^2a^2 + 2satc + t^2c^2 = s^{2}(a^{2} + b^{2}) + t^2(c^2 + d^2) + 2st(ac + bd) = s^2 + t^2. $$
So, our moment generating function is given by
$$e^{s^2 + t^2}/2 $$
probability probability-theory probability-distributions
probability probability-theory probability-distributions
edited Dec 16 '18 at 20:18
asked Dec 16 '18 at 19:34
user614735
$begingroup$
Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
$endgroup$
– Tki Deneb
Dec 16 '18 at 19:50
$begingroup$
@TkiDeneb think i figured it out ur way. can u check?
$endgroup$
– user614735
Dec 16 '18 at 20:18
$begingroup$
I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
$endgroup$
– Tki Deneb
Dec 16 '18 at 20:46
$begingroup$
okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
$endgroup$
– user614735
Dec 16 '18 at 20:51
add a comment |
$begingroup$
Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
$endgroup$
– Tki Deneb
Dec 16 '18 at 19:50
$begingroup$
@TkiDeneb think i figured it out ur way. can u check?
$endgroup$
– user614735
Dec 16 '18 at 20:18
$begingroup$
I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
$endgroup$
– Tki Deneb
Dec 16 '18 at 20:46
$begingroup$
okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
$endgroup$
– user614735
Dec 16 '18 at 20:51
$begingroup$
Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
$endgroup$
– Tki Deneb
Dec 16 '18 at 19:50
$begingroup$
Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
$endgroup$
– Tki Deneb
Dec 16 '18 at 19:50
$begingroup$
@TkiDeneb think i figured it out ur way. can u check?
$endgroup$
– user614735
Dec 16 '18 at 20:18
$begingroup$
@TkiDeneb think i figured it out ur way. can u check?
$endgroup$
– user614735
Dec 16 '18 at 20:18
$begingroup$
I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
$endgroup$
– Tki Deneb
Dec 16 '18 at 20:46
$begingroup$
I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
$endgroup$
– Tki Deneb
Dec 16 '18 at 20:46
$begingroup$
okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
$endgroup$
– user614735
Dec 16 '18 at 20:51
$begingroup$
okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
$endgroup$
– user614735
Dec 16 '18 at 20:51
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We can directly use the indepencence of $X_1$ and $X_2$:
$$
Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
$$
Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
$$
Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043062%2ffinding-the-joint-mgf-of-two-random-variables-given-conditions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can directly use the indepencence of $X_1$ and $X_2$:
$$
Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
$$
Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
$$
Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
$$
$endgroup$
add a comment |
$begingroup$
We can directly use the indepencence of $X_1$ and $X_2$:
$$
Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
$$
Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
$$
Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
$$
$endgroup$
add a comment |
$begingroup$
We can directly use the indepencence of $X_1$ and $X_2$:
$$
Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
$$
Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
$$
Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
$$
$endgroup$
We can directly use the indepencence of $X_1$ and $X_2$:
$$
Eleft[e^{sY_1+tY_2}right] = Eleft[e^{(sa+tc)X_1}e^{(sb+td)X_2}right] = Eleft[e^{(sa+tc)X_1}right]Eleft[e^{(sb+td)X_2}right].
$$
Now for example $(sa+tc)X_1 sim N(0,(sa+tc)^2)$, so the first factor is the mean of a log-normal distribution with parameters $mu = 0$ and $sigma^2 = (sa+tc)^2$, which is
$$
Eleft[e^{(sa+tc)X_1}right] = e^{frac{(sa+tc)^2}{2}}.
$$
answered Dec 16 '18 at 21:10
Tki DenebTki Deneb
31710
31710
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043062%2ffinding-the-joint-mgf-of-two-random-variables-given-conditions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Why don't you write $e^{sY_1 + tY_2} = e^{(sa+tc)X_1}e^{(sb+td)X_2}$ and use the independence?
$endgroup$
– Tki Deneb
Dec 16 '18 at 19:50
$begingroup$
@TkiDeneb think i figured it out ur way. can u check?
$endgroup$
– user614735
Dec 16 '18 at 20:18
$begingroup$
I think it should be $E[e^{(sa+tc)X_1}] = e^{frac{(sa+tc)^2}{2}}$.
$endgroup$
– Tki Deneb
Dec 16 '18 at 20:46
$begingroup$
okay, thanks. i'll check again. BTW, if you post an answer i'll flag you correct
$endgroup$
– user614735
Dec 16 '18 at 20:51