Showing that the ratio of two standard independent normals is a Cauchy using Characteristic Functions
$begingroup$
Question
Let $X$ and $Y$ be independent standard normals. Use characteristic functions to find the distribution of $X/Y$.
My attempt
We will attempt to show that $Ee^{itX/Y}=e^{-|t|}$ (the c.f. of a Cauchy random variable) from which the claim will follow. To this end, note that
$$
Ee^{itX/Y}=intfrac{1}{sqrt{2pi}}e^{-y^2/2}int e^{itx/y}frac{1}{sqrt{2pi}}e^{-x^2/2}, dx, dy=int frac{1}{sqrt{2pi}}e^{-y^2/2}expleft(-frac{t^2}{2y^2}right), dy
$$
where we used the fact that $Ee^{it X}=exp(-0.5t^2)$. We can write it as
$$
Ee^{itX/Y}=int frac{1}{sqrt{2pi}}expleft(-frac{1}{2}left[frac{t^2}{y^2}+y^2right]right), dy.
$$
But at this point I don't know how to evaluate the integral. I tried completing the square in the exponent but I couldn't make progress from there.
Any help is appreciated.
probability probability-theory statistics characteristic-functions
$endgroup$
add a comment |
$begingroup$
Question
Let $X$ and $Y$ be independent standard normals. Use characteristic functions to find the distribution of $X/Y$.
My attempt
We will attempt to show that $Ee^{itX/Y}=e^{-|t|}$ (the c.f. of a Cauchy random variable) from which the claim will follow. To this end, note that
$$
Ee^{itX/Y}=intfrac{1}{sqrt{2pi}}e^{-y^2/2}int e^{itx/y}frac{1}{sqrt{2pi}}e^{-x^2/2}, dx, dy=int frac{1}{sqrt{2pi}}e^{-y^2/2}expleft(-frac{t^2}{2y^2}right), dy
$$
where we used the fact that $Ee^{it X}=exp(-0.5t^2)$. We can write it as
$$
Ee^{itX/Y}=int frac{1}{sqrt{2pi}}expleft(-frac{1}{2}left[frac{t^2}{y^2}+y^2right]right), dy.
$$
But at this point I don't know how to evaluate the integral. I tried completing the square in the exponent but I couldn't make progress from there.
Any help is appreciated.
probability probability-theory statistics characteristic-functions
$endgroup$
add a comment |
$begingroup$
Question
Let $X$ and $Y$ be independent standard normals. Use characteristic functions to find the distribution of $X/Y$.
My attempt
We will attempt to show that $Ee^{itX/Y}=e^{-|t|}$ (the c.f. of a Cauchy random variable) from which the claim will follow. To this end, note that
$$
Ee^{itX/Y}=intfrac{1}{sqrt{2pi}}e^{-y^2/2}int e^{itx/y}frac{1}{sqrt{2pi}}e^{-x^2/2}, dx, dy=int frac{1}{sqrt{2pi}}e^{-y^2/2}expleft(-frac{t^2}{2y^2}right), dy
$$
where we used the fact that $Ee^{it X}=exp(-0.5t^2)$. We can write it as
$$
Ee^{itX/Y}=int frac{1}{sqrt{2pi}}expleft(-frac{1}{2}left[frac{t^2}{y^2}+y^2right]right), dy.
$$
But at this point I don't know how to evaluate the integral. I tried completing the square in the exponent but I couldn't make progress from there.
Any help is appreciated.
probability probability-theory statistics characteristic-functions
$endgroup$
Question
Let $X$ and $Y$ be independent standard normals. Use characteristic functions to find the distribution of $X/Y$.
My attempt
We will attempt to show that $Ee^{itX/Y}=e^{-|t|}$ (the c.f. of a Cauchy random variable) from which the claim will follow. To this end, note that
$$
Ee^{itX/Y}=intfrac{1}{sqrt{2pi}}e^{-y^2/2}int e^{itx/y}frac{1}{sqrt{2pi}}e^{-x^2/2}, dx, dy=int frac{1}{sqrt{2pi}}e^{-y^2/2}expleft(-frac{t^2}{2y^2}right), dy
$$
where we used the fact that $Ee^{it X}=exp(-0.5t^2)$. We can write it as
$$
Ee^{itX/Y}=int frac{1}{sqrt{2pi}}expleft(-frac{1}{2}left[frac{t^2}{y^2}+y^2right]right), dy.
$$
But at this point I don't know how to evaluate the integral. I tried completing the square in the exponent but I couldn't make progress from there.
Any help is appreciated.
probability probability-theory statistics characteristic-functions
probability probability-theory statistics characteristic-functions
asked Dec 9 '18 at 19:18
Foobaz JohnFoobaz John
22.1k41352
22.1k41352
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.
Fix $t>0$. Following your calculations we have
$$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$
Performing a change of variables, $z:=t/y$, we find
$$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$
This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$
Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.
$endgroup$
add a comment |
$begingroup$
Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
$$
E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
$$
In polar coordinates this equals
$$
2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
$$
Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
$$
int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
$$
At this point you can quit, because you've just written down the characteristic function of a Cauchy density.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032825%2fshowing-that-the-ratio-of-two-standard-independent-normals-is-a-cauchy-using-cha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.
Fix $t>0$. Following your calculations we have
$$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$
Performing a change of variables, $z:=t/y$, we find
$$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$
This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$
Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.
$endgroup$
add a comment |
$begingroup$
Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.
Fix $t>0$. Following your calculations we have
$$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$
Performing a change of variables, $z:=t/y$, we find
$$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$
This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$
Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.
$endgroup$
add a comment |
$begingroup$
Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.
Fix $t>0$. Following your calculations we have
$$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$
Performing a change of variables, $z:=t/y$, we find
$$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$
This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$
Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.
$endgroup$
Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.
Fix $t>0$. Following your calculations we have
$$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$
Performing a change of variables, $z:=t/y$, we find
$$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$
This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$
Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.
edited Dec 9 '18 at 20:49
answered Dec 9 '18 at 20:34
sazsaz
80.6k860125
80.6k860125
add a comment |
add a comment |
$begingroup$
Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
$$
E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
$$
In polar coordinates this equals
$$
2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
$$
Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
$$
int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
$$
At this point you can quit, because you've just written down the characteristic function of a Cauchy density.
$endgroup$
add a comment |
$begingroup$
Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
$$
E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
$$
In polar coordinates this equals
$$
2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
$$
Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
$$
int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
$$
At this point you can quit, because you've just written down the characteristic function of a Cauchy density.
$endgroup$
add a comment |
$begingroup$
Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
$$
E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
$$
In polar coordinates this equals
$$
2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
$$
Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
$$
int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
$$
At this point you can quit, because you've just written down the characteristic function of a Cauchy density.
$endgroup$
Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
$$
E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
$$
In polar coordinates this equals
$$
2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
$$
Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
$$
int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
$$
At this point you can quit, because you've just written down the characteristic function of a Cauchy density.
answered Dec 12 '18 at 23:43
grand_chatgrand_chat
20.3k11326
20.3k11326
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032825%2fshowing-that-the-ratio-of-two-standard-independent-normals-is-a-cauchy-using-cha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown