Showing that the ratio of two standard independent normals is a Cauchy using Characteristic Functions












1












$begingroup$


Question




Let $X$ and $Y$ be independent standard normals. Use characteristic functions to find the distribution of $X/Y$.




My attempt



We will attempt to show that $Ee^{itX/Y}=e^{-|t|}$ (the c.f. of a Cauchy random variable) from which the claim will follow. To this end, note that
$$
Ee^{itX/Y}=intfrac{1}{sqrt{2pi}}e^{-y^2/2}int e^{itx/y}frac{1}{sqrt{2pi}}e^{-x^2/2}, dx, dy=int frac{1}{sqrt{2pi}}e^{-y^2/2}expleft(-frac{t^2}{2y^2}right), dy
$$

where we used the fact that $Ee^{it X}=exp(-0.5t^2)$. We can write it as
$$
Ee^{itX/Y}=int frac{1}{sqrt{2pi}}expleft(-frac{1}{2}left[frac{t^2}{y^2}+y^2right]right), dy.
$$

But at this point I don't know how to evaluate the integral. I tried completing the square in the exponent but I couldn't make progress from there.



Any help is appreciated.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Question




    Let $X$ and $Y$ be independent standard normals. Use characteristic functions to find the distribution of $X/Y$.




    My attempt



    We will attempt to show that $Ee^{itX/Y}=e^{-|t|}$ (the c.f. of a Cauchy random variable) from which the claim will follow. To this end, note that
    $$
    Ee^{itX/Y}=intfrac{1}{sqrt{2pi}}e^{-y^2/2}int e^{itx/y}frac{1}{sqrt{2pi}}e^{-x^2/2}, dx, dy=int frac{1}{sqrt{2pi}}e^{-y^2/2}expleft(-frac{t^2}{2y^2}right), dy
    $$

    where we used the fact that $Ee^{it X}=exp(-0.5t^2)$. We can write it as
    $$
    Ee^{itX/Y}=int frac{1}{sqrt{2pi}}expleft(-frac{1}{2}left[frac{t^2}{y^2}+y^2right]right), dy.
    $$

    But at this point I don't know how to evaluate the integral. I tried completing the square in the exponent but I couldn't make progress from there.



    Any help is appreciated.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Question




      Let $X$ and $Y$ be independent standard normals. Use characteristic functions to find the distribution of $X/Y$.




      My attempt



      We will attempt to show that $Ee^{itX/Y}=e^{-|t|}$ (the c.f. of a Cauchy random variable) from which the claim will follow. To this end, note that
      $$
      Ee^{itX/Y}=intfrac{1}{sqrt{2pi}}e^{-y^2/2}int e^{itx/y}frac{1}{sqrt{2pi}}e^{-x^2/2}, dx, dy=int frac{1}{sqrt{2pi}}e^{-y^2/2}expleft(-frac{t^2}{2y^2}right), dy
      $$

      where we used the fact that $Ee^{it X}=exp(-0.5t^2)$. We can write it as
      $$
      Ee^{itX/Y}=int frac{1}{sqrt{2pi}}expleft(-frac{1}{2}left[frac{t^2}{y^2}+y^2right]right), dy.
      $$

      But at this point I don't know how to evaluate the integral. I tried completing the square in the exponent but I couldn't make progress from there.



      Any help is appreciated.










      share|cite|improve this question









      $endgroup$




      Question




      Let $X$ and $Y$ be independent standard normals. Use characteristic functions to find the distribution of $X/Y$.




      My attempt



      We will attempt to show that $Ee^{itX/Y}=e^{-|t|}$ (the c.f. of a Cauchy random variable) from which the claim will follow. To this end, note that
      $$
      Ee^{itX/Y}=intfrac{1}{sqrt{2pi}}e^{-y^2/2}int e^{itx/y}frac{1}{sqrt{2pi}}e^{-x^2/2}, dx, dy=int frac{1}{sqrt{2pi}}e^{-y^2/2}expleft(-frac{t^2}{2y^2}right), dy
      $$

      where we used the fact that $Ee^{it X}=exp(-0.5t^2)$. We can write it as
      $$
      Ee^{itX/Y}=int frac{1}{sqrt{2pi}}expleft(-frac{1}{2}left[frac{t^2}{y^2}+y^2right]right), dy.
      $$

      But at this point I don't know how to evaluate the integral. I tried completing the square in the exponent but I couldn't make progress from there.



      Any help is appreciated.







      probability probability-theory statistics characteristic-functions






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 9 '18 at 19:18









      Foobaz JohnFoobaz John

      22.1k41352




      22.1k41352






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.



          Fix $t>0$. Following your calculations we have



          $$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$



          Performing a change of variables, $z:=t/y$, we find



          $$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$



          This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$



          Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
            $$
            E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
            e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
            $$

            In polar coordinates this equals
            $$
            2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
            $$

            Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
            $$
            int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
            $$

            At this point you can quit, because you've just written down the characteristic function of a Cauchy density.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032825%2fshowing-that-the-ratio-of-two-standard-independent-normals-is-a-cauchy-using-cha%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.



              Fix $t>0$. Following your calculations we have



              $$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$



              Performing a change of variables, $z:=t/y$, we find



              $$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$



              This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$



              Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.






              share|cite|improve this answer











              $endgroup$


















                2












                $begingroup$

                Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.



                Fix $t>0$. Following your calculations we have



                $$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$



                Performing a change of variables, $z:=t/y$, we find



                $$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$



                This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$



                Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.






                share|cite|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.



                  Fix $t>0$. Following your calculations we have



                  $$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$



                  Performing a change of variables, $z:=t/y$, we find



                  $$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$



                  This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$



                  Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.






                  share|cite|improve this answer











                  $endgroup$



                  Set $phi(t):= mathbb{E}exp(itX/Y)$. Since $phi(0)=1$ and $phi$ is even, it suffices to show that $phi(t)=e^{-t}$ for all $t>0$.



                  Fix $t>0$. Following your calculations we have



                  $$phi(t) = sqrt{frac{2}{pi}} int_{(0,infty)} exp left(- frac{1}{2} left[ frac{t^2}{y^2}+y^2 right] right) , dy tag{1}$$



                  Performing a change of variables, $z:=t/y$, we find



                  $$phi(t) = t sqrt{frac{2}{pi} } int_{(0,infty)}frac{1}{z^2} exp left(- frac{1}{2} left[ z^2 + frac{t^2}{z^2} right] right) , dz stackrel{(1)}{=} - phi'(t).$$



                  This shows that $phi$ solves the ODE $$phi' = - phi quad text{on $(0,infty)$}.$$



                  Since $phi(0)=1$ we conclude that $phi(t)=e^{-t}$ for $t geq 0$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 9 '18 at 20:49

























                  answered Dec 9 '18 at 20:34









                  sazsaz

                  80.6k860125




                  80.6k860125























                      1












                      $begingroup$

                      Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
                      $$
                      E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
                      e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
                      $$

                      In polar coordinates this equals
                      $$
                      2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
                      $$

                      Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
                      $$
                      int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
                      $$

                      At this point you can quit, because you've just written down the characteristic function of a Cauchy density.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
                        $$
                        E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
                        e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
                        $$

                        In polar coordinates this equals
                        $$
                        2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
                        $$

                        Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
                        $$
                        int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
                        $$

                        At this point you can quit, because you've just written down the characteristic function of a Cauchy density.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
                          $$
                          E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
                          e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
                          $$

                          In polar coordinates this equals
                          $$
                          2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
                          $$

                          Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
                          $$
                          int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
                          $$

                          At this point you can quit, because you've just written down the characteristic function of a Cauchy density.






                          share|cite|improve this answer









                          $endgroup$



                          Switch to polar coordinates. It is slightly tidier to evaluate $E(e^{iY/X})$, which is expressible by symmetry as
                          $$
                          E(e^{iY/X})=2int_{x=0}^inftyint_{y=-infty}^infty
                          e^{ity/x}frac1{2pi}e^{-(x^2+y^2)/2},dy,dx.
                          $$

                          In polar coordinates this equals
                          $$
                          2int_{theta=-pi/2}^{pi/2}int_{r=0}^infty e^{ittan theta}frac1{2pi}e^{-r^2/2}r,dr,dtheta=int_{theta=-pi/2}^{pi/2}frac1{pi}e^{ittantheta}dtheta.
                          $$

                          Apply the substitution $u=tantheta$, $du=sec^2theta, dtheta=(1+u^2)dtheta$ to obtain
                          $$
                          int_{u=-infty}^inftyfrac1pifrac{e^{itu}}{1+u^2}du.
                          $$

                          At this point you can quit, because you've just written down the characteristic function of a Cauchy density.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 12 '18 at 23:43









                          grand_chatgrand_chat

                          20.3k11326




                          20.3k11326






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032825%2fshowing-that-the-ratio-of-two-standard-independent-normals-is-a-cauchy-using-cha%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bundesstraße 106

                              Verónica Boquete

                              Ida-Boy-Ed-Garten