Solve IVP of $(u_t )^2 + (u_x )^2 − u^2 = 0$ using method of characteristics
$begingroup$
Consider the nonlinear first-order initial-value problem:
$$(u_t )^2 + (u_x )^2 − u^2 = 0$$
with initial condition $u(x, 0) = Ae^{−sqrt{1+x^2}}$.
(a) Find its solution for all $t > 0$ using the method of
characteristics.
(b) Describe its behavior for all $t > 0$. Does it remain a continuous
function of $x$ for all $t$?
(c) Find $lim u(x, t)$.
My attempt:
Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$
$$F(p,z,x)=p_1^2+p_2^2-z^2, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=2z, frac{dF}{dx}=langle 0,0 rangle $$
Characteristics:
begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -2zlangle p_1,p_2 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}
IVP:
$$ x_0 =r quad t_0 =0, quad u_0=z_0=Ae^{−sqrt{1+r^2}} $$
$$ u_x(x,0) = -frac{Ae^{−sqrt{1+x^2}}x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{Ae^{−sqrt{1+r^2}}r}{{sqrt{1+r^2}}} $$
$$ p_{1_0}^2+p_{2_0}^2-u_0^2 = 0 implies p_{2_0}^2=A^2e^{-2sqrt{1+r^2}}-frac{A^2e^{−2sqrt{1+r^2}}r^2}{1+r^2}=frac{Ae^{−sqrt{1+r^2}}}{{sqrt{1+r^2}}}
$$
What's the next step? Solving $p_s,z_s,x_s$ seems a little bit painful...
pde characteristics
$endgroup$
add a comment |
$begingroup$
Consider the nonlinear first-order initial-value problem:
$$(u_t )^2 + (u_x )^2 − u^2 = 0$$
with initial condition $u(x, 0) = Ae^{−sqrt{1+x^2}}$.
(a) Find its solution for all $t > 0$ using the method of
characteristics.
(b) Describe its behavior for all $t > 0$. Does it remain a continuous
function of $x$ for all $t$?
(c) Find $lim u(x, t)$.
My attempt:
Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$
$$F(p,z,x)=p_1^2+p_2^2-z^2, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=2z, frac{dF}{dx}=langle 0,0 rangle $$
Characteristics:
begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -2zlangle p_1,p_2 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}
IVP:
$$ x_0 =r quad t_0 =0, quad u_0=z_0=Ae^{−sqrt{1+r^2}} $$
$$ u_x(x,0) = -frac{Ae^{−sqrt{1+x^2}}x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{Ae^{−sqrt{1+r^2}}r}{{sqrt{1+r^2}}} $$
$$ p_{1_0}^2+p_{2_0}^2-u_0^2 = 0 implies p_{2_0}^2=A^2e^{-2sqrt{1+r^2}}-frac{A^2e^{−2sqrt{1+r^2}}r^2}{1+r^2}=frac{Ae^{−sqrt{1+r^2}}}{{sqrt{1+r^2}}}
$$
What's the next step? Solving $p_s,z_s,x_s$ seems a little bit painful...
pde characteristics
$endgroup$
add a comment |
$begingroup$
Consider the nonlinear first-order initial-value problem:
$$(u_t )^2 + (u_x )^2 − u^2 = 0$$
with initial condition $u(x, 0) = Ae^{−sqrt{1+x^2}}$.
(a) Find its solution for all $t > 0$ using the method of
characteristics.
(b) Describe its behavior for all $t > 0$. Does it remain a continuous
function of $x$ for all $t$?
(c) Find $lim u(x, t)$.
My attempt:
Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$
$$F(p,z,x)=p_1^2+p_2^2-z^2, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=2z, frac{dF}{dx}=langle 0,0 rangle $$
Characteristics:
begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -2zlangle p_1,p_2 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}
IVP:
$$ x_0 =r quad t_0 =0, quad u_0=z_0=Ae^{−sqrt{1+r^2}} $$
$$ u_x(x,0) = -frac{Ae^{−sqrt{1+x^2}}x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{Ae^{−sqrt{1+r^2}}r}{{sqrt{1+r^2}}} $$
$$ p_{1_0}^2+p_{2_0}^2-u_0^2 = 0 implies p_{2_0}^2=A^2e^{-2sqrt{1+r^2}}-frac{A^2e^{−2sqrt{1+r^2}}r^2}{1+r^2}=frac{Ae^{−sqrt{1+r^2}}}{{sqrt{1+r^2}}}
$$
What's the next step? Solving $p_s,z_s,x_s$ seems a little bit painful...
pde characteristics
$endgroup$
Consider the nonlinear first-order initial-value problem:
$$(u_t )^2 + (u_x )^2 − u^2 = 0$$
with initial condition $u(x, 0) = Ae^{−sqrt{1+x^2}}$.
(a) Find its solution for all $t > 0$ using the method of
characteristics.
(b) Describe its behavior for all $t > 0$. Does it remain a continuous
function of $x$ for all $t$?
(c) Find $lim u(x, t)$.
My attempt:
Let $x(s)=langle x(s),t(s) rangle, p= langle p_1(s),p_2(s) rangle = langle u_x,u_t rangle , z = u(x,t)$
$$F(p,z,x)=p_1^2+p_2^2-z^2, frac{dF}{dp}=langle 2p_1,2p_2 rangle, frac{dF}{dz}=2z, frac{dF}{dx}=langle 0,0 rangle $$
Characteristics:
begin{align}
p_s &= frac{dF}{dx}-frac{dF}{dz}p=-langle 0,0 rangle -2zlangle p_1,p_2 rangle \
z_s &= frac{dF}{dp}p= langle 2p_1,2p_2rangle cdot langle p_1,p_2 rangle =2p_1^2+2p_2^2\
x_s &= frac{dF}{dp}= langle 2p_1,2p_2 rangle
end{align}
IVP:
$$ x_0 =r quad t_0 =0, quad u_0=z_0=Ae^{−sqrt{1+r^2}} $$
$$ u_x(x,0) = -frac{Ae^{−sqrt{1+x^2}}x}{{sqrt{1+x^2}}}implies p_{1_0}= -frac{Ae^{−sqrt{1+r^2}}r}{{sqrt{1+r^2}}} $$
$$ p_{1_0}^2+p_{2_0}^2-u_0^2 = 0 implies p_{2_0}^2=A^2e^{-2sqrt{1+r^2}}-frac{A^2e^{−2sqrt{1+r^2}}r^2}{1+r^2}=frac{Ae^{−sqrt{1+r^2}}}{{sqrt{1+r^2}}}
$$
What's the next step? Solving $p_s,z_s,x_s$ seems a little bit painful...
pde characteristics
pde characteristics
edited Dec 10 '18 at 17:06
Harry49
6,44631133
6,44631133
asked Dec 9 '18 at 19:16
dxdydzdxdydz
33310
33310
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$(u_t )^2 + (u_x )^2 = u^2 $$
$$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
HINT:
$u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
$$(v_t )^2 + (v_x )^2 =1$$
$$v(x,0)=-sqrt{1+x^2}$$
This kind of PDE is well known (Eikonal PDE) :
https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).
https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.
https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.
Of course, the boundary conditions are diferent, but with the same method you will find the solution :
$$v(x,t)=-sqrt{(t+1)^2+x^2}$$
$$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$
$endgroup$
$begingroup$
So u is a continuous function of x for all t, can we say anything else about the behavior of u?
$endgroup$
– dxdydz
Dec 11 '18 at 0:34
$begingroup$
$u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
$endgroup$
– JJacquelin
Dec 11 '18 at 13:54
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032822%2fsolve-ivp-of-u-t-2-u-x-2-%25e2%2588%2592-u2-0-using-method-of-characteristics%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$(u_t )^2 + (u_x )^2 = u^2 $$
$$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
HINT:
$u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
$$(v_t )^2 + (v_x )^2 =1$$
$$v(x,0)=-sqrt{1+x^2}$$
This kind of PDE is well known (Eikonal PDE) :
https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).
https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.
https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.
Of course, the boundary conditions are diferent, but with the same method you will find the solution :
$$v(x,t)=-sqrt{(t+1)^2+x^2}$$
$$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$
$endgroup$
$begingroup$
So u is a continuous function of x for all t, can we say anything else about the behavior of u?
$endgroup$
– dxdydz
Dec 11 '18 at 0:34
$begingroup$
$u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
$endgroup$
– JJacquelin
Dec 11 '18 at 13:54
add a comment |
$begingroup$
$$(u_t )^2 + (u_x )^2 = u^2 $$
$$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
HINT:
$u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
$$(v_t )^2 + (v_x )^2 =1$$
$$v(x,0)=-sqrt{1+x^2}$$
This kind of PDE is well known (Eikonal PDE) :
https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).
https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.
https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.
Of course, the boundary conditions are diferent, but with the same method you will find the solution :
$$v(x,t)=-sqrt{(t+1)^2+x^2}$$
$$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$
$endgroup$
$begingroup$
So u is a continuous function of x for all t, can we say anything else about the behavior of u?
$endgroup$
– dxdydz
Dec 11 '18 at 0:34
$begingroup$
$u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
$endgroup$
– JJacquelin
Dec 11 '18 at 13:54
add a comment |
$begingroup$
$$(u_t )^2 + (u_x )^2 = u^2 $$
$$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
HINT:
$u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
$$(v_t )^2 + (v_x )^2 =1$$
$$v(x,0)=-sqrt{1+x^2}$$
This kind of PDE is well known (Eikonal PDE) :
https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).
https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.
https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.
Of course, the boundary conditions are diferent, but with the same method you will find the solution :
$$v(x,t)=-sqrt{(t+1)^2+x^2}$$
$$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$
$endgroup$
$$(u_t )^2 + (u_x )^2 = u^2 $$
$$u(x, 0) = Ae^{−sqrt{1+x^2}}$$
HINT:
$u(x,t)=Ae^{v(x,t)}quad;quad u_x=uv_xquad;quad u_t=uv_t$
$$(v_t )^2 + (v_x )^2 =1$$
$$v(x,0)=-sqrt{1+x^2}$$
This kind of PDE is well known (Eikonal PDE) :
https://www.math.ualberta.ca/~xinweiyu/436.A1.12f/PDE_Meth_Characteristics.pdf , Eq.(2.208).
https://web.stanford.edu/class/math220a/handouts/firstorder.pdf , example 11.
https://people.cam.cornell.edu/~zc227/extras/math6200_pres.pdf , §.1.
Of course, the boundary conditions are diferent, but with the same method you will find the solution :
$$v(x,t)=-sqrt{(t+1)^2+x^2}$$
$$u(x,t)=A:e^{-sqrt{(t+1)^2+x^2}}$$
edited Dec 10 '18 at 12:58
answered Dec 10 '18 at 12:47
JJacquelinJJacquelin
43.9k21853
43.9k21853
$begingroup$
So u is a continuous function of x for all t, can we say anything else about the behavior of u?
$endgroup$
– dxdydz
Dec 11 '18 at 0:34
$begingroup$
$u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
$endgroup$
– JJacquelin
Dec 11 '18 at 13:54
add a comment |
$begingroup$
So u is a continuous function of x for all t, can we say anything else about the behavior of u?
$endgroup$
– dxdydz
Dec 11 '18 at 0:34
$begingroup$
$u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
$endgroup$
– JJacquelin
Dec 11 '18 at 13:54
$begingroup$
So u is a continuous function of x for all t, can we say anything else about the behavior of u?
$endgroup$
– dxdydz
Dec 11 '18 at 0:34
$begingroup$
So u is a continuous function of x for all t, can we say anything else about the behavior of u?
$endgroup$
– dxdydz
Dec 11 '18 at 0:34
$begingroup$
$u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
$endgroup$
– JJacquelin
Dec 11 '18 at 13:54
$begingroup$
$u(x,t)$ decreases when $x$ and $t>0$ increase. One can give the maximum and the minimum.
$endgroup$
– JJacquelin
Dec 11 '18 at 13:54
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032822%2fsolve-ivp-of-u-t-2-u-x-2-%25e2%2588%2592-u2-0-using-method-of-characteristics%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown