Trying to Prove a generalization of Raabe's test
$begingroup$
I'm trying to prove (or disprove) a statement by Feld:
https://math.feld.cvut.cz/mt/txte/2/txe3ea2d.htm
It's a generalization of Raabe's test and it says that for a sequence $a_n$, for all n, if $a_n>0$ and $c_n$ is absolutely convergent and
$a_{n+1}/a_n = 1-A/n+c_n$
Then $sum_{n=1}^infty a_n$ converges iff $A>1$
I rewrite:
$n(1-a_{n+1}/a_n)=A-n c_n$
and take the limit on both sides as $n to infty$ and its proven by Raabe's simple test, as long as $lim_{n to infty} n c_n=0$.
But it has been shown (Series converges implies $lim{n a_n} = 0$) that $lim_{n to infty} n c_n$ is not zero unless $c_n$ is non-increasing, so I'm stuck. Did Feld forget to add that $c_n$ is non-increasing, or is he right as it stands?
real-analysis convergence
$endgroup$
add a comment |
$begingroup$
I'm trying to prove (or disprove) a statement by Feld:
https://math.feld.cvut.cz/mt/txte/2/txe3ea2d.htm
It's a generalization of Raabe's test and it says that for a sequence $a_n$, for all n, if $a_n>0$ and $c_n$ is absolutely convergent and
$a_{n+1}/a_n = 1-A/n+c_n$
Then $sum_{n=1}^infty a_n$ converges iff $A>1$
I rewrite:
$n(1-a_{n+1}/a_n)=A-n c_n$
and take the limit on both sides as $n to infty$ and its proven by Raabe's simple test, as long as $lim_{n to infty} n c_n=0$.
But it has been shown (Series converges implies $lim{n a_n} = 0$) that $lim_{n to infty} n c_n$ is not zero unless $c_n$ is non-increasing, so I'm stuck. Did Feld forget to add that $c_n$ is non-increasing, or is he right as it stands?
real-analysis convergence
$endgroup$
add a comment |
$begingroup$
I'm trying to prove (or disprove) a statement by Feld:
https://math.feld.cvut.cz/mt/txte/2/txe3ea2d.htm
It's a generalization of Raabe's test and it says that for a sequence $a_n$, for all n, if $a_n>0$ and $c_n$ is absolutely convergent and
$a_{n+1}/a_n = 1-A/n+c_n$
Then $sum_{n=1}^infty a_n$ converges iff $A>1$
I rewrite:
$n(1-a_{n+1}/a_n)=A-n c_n$
and take the limit on both sides as $n to infty$ and its proven by Raabe's simple test, as long as $lim_{n to infty} n c_n=0$.
But it has been shown (Series converges implies $lim{n a_n} = 0$) that $lim_{n to infty} n c_n$ is not zero unless $c_n$ is non-increasing, so I'm stuck. Did Feld forget to add that $c_n$ is non-increasing, or is he right as it stands?
real-analysis convergence
$endgroup$
I'm trying to prove (or disprove) a statement by Feld:
https://math.feld.cvut.cz/mt/txte/2/txe3ea2d.htm
It's a generalization of Raabe's test and it says that for a sequence $a_n$, for all n, if $a_n>0$ and $c_n$ is absolutely convergent and
$a_{n+1}/a_n = 1-A/n+c_n$
Then $sum_{n=1}^infty a_n$ converges iff $A>1$
I rewrite:
$n(1-a_{n+1}/a_n)=A-n c_n$
and take the limit on both sides as $n to infty$ and its proven by Raabe's simple test, as long as $lim_{n to infty} n c_n=0$.
But it has been shown (Series converges implies $lim{n a_n} = 0$) that $lim_{n to infty} n c_n$ is not zero unless $c_n$ is non-increasing, so I'm stuck. Did Feld forget to add that $c_n$ is non-increasing, or is he right as it stands?
real-analysis convergence
real-analysis convergence
edited Dec 9 '18 at 21:22
Paul R.
asked Dec 9 '18 at 19:29
Paul R.Paul R.
213
213
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032841%2ftrying-to-prove-a-generalization-of-raabes-test%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032841%2ftrying-to-prove-a-generalization-of-raabes-test%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown