Showing weak convergence in $sigma(L^p,L^{p'})$
$begingroup$
I am solving the following exercise.
I have followed the below solution for the first part, and it seems okay. Except for why (S2) and (S3) implies that $g_nto f$ almost everywhere. We should not get $g_nto f$ almost everywhere just because $f_nto f$ and $g_nintext{conv}{f_1,f_2,dots,f_n}$. Right? What am I missing here?
I am a bit unsure about how things change in the second part. I do not know where to start either. Any help is much appreciated. (The book in question is Brezis.)
functional-analysis weak-convergence
$endgroup$
add a comment |
$begingroup$
I am solving the following exercise.
I have followed the below solution for the first part, and it seems okay. Except for why (S2) and (S3) implies that $g_nto f$ almost everywhere. We should not get $g_nto f$ almost everywhere just because $f_nto f$ and $g_nintext{conv}{f_1,f_2,dots,f_n}$. Right? What am I missing here?
I am a bit unsure about how things change in the second part. I do not know where to start either. Any help is much appreciated. (The book in question is Brezis.)
functional-analysis weak-convergence
$endgroup$
$begingroup$
Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
$endgroup$
– Davide Giraudo
Dec 11 '18 at 9:27
add a comment |
$begingroup$
I am solving the following exercise.
I have followed the below solution for the first part, and it seems okay. Except for why (S2) and (S3) implies that $g_nto f$ almost everywhere. We should not get $g_nto f$ almost everywhere just because $f_nto f$ and $g_nintext{conv}{f_1,f_2,dots,f_n}$. Right? What am I missing here?
I am a bit unsure about how things change in the second part. I do not know where to start either. Any help is much appreciated. (The book in question is Brezis.)
functional-analysis weak-convergence
$endgroup$
I am solving the following exercise.
I have followed the below solution for the first part, and it seems okay. Except for why (S2) and (S3) implies that $g_nto f$ almost everywhere. We should not get $g_nto f$ almost everywhere just because $f_nto f$ and $g_nintext{conv}{f_1,f_2,dots,f_n}$. Right? What am I missing here?
I am a bit unsure about how things change in the second part. I do not know where to start either. Any help is much appreciated. (The book in question is Brezis.)
functional-analysis weak-convergence
functional-analysis weak-convergence
asked Dec 9 '18 at 19:21
Logarithmic DerivativeLogarithmic Derivative
3421416
3421416
$begingroup$
Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
$endgroup$
– Davide Giraudo
Dec 11 '18 at 9:27
add a comment |
$begingroup$
Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
$endgroup$
– Davide Giraudo
Dec 11 '18 at 9:27
$begingroup$
Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
$endgroup$
– Davide Giraudo
Dec 11 '18 at 9:27
$begingroup$
Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
$endgroup$
– Davide Giraudo
Dec 11 '18 at 9:27
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
$$
leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
$$
Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
begin{align}
leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert \
&leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert\
&leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
- f(x) rightrvert\
&leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert sum_{k=n}^m lambda_k.
end{align}
We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
$$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert
$$
hence letting $varepsilonto 0$ gives
$$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert,
$$
which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032830%2fshowing-weak-convergence-in-sigmalp-lp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
$$
leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
$$
Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
begin{align}
leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert \
&leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert\
&leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
- f(x) rightrvert\
&leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert sum_{k=n}^m lambda_k.
end{align}
We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
$$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert
$$
hence letting $varepsilonto 0$ gives
$$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert,
$$
which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.
$endgroup$
add a comment |
$begingroup$
Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
$$
leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
$$
Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
begin{align}
leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert \
&leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert\
&leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
- f(x) rightrvert\
&leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert sum_{k=n}^m lambda_k.
end{align}
We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
$$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert
$$
hence letting $varepsilonto 0$ gives
$$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert,
$$
which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.
$endgroup$
add a comment |
$begingroup$
Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
$$
leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
$$
Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
begin{align}
leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert \
&leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert\
&leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
- f(x) rightrvert\
&leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert sum_{k=n}^m lambda_k.
end{align}
We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
$$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert
$$
hence letting $varepsilonto 0$ gives
$$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert,
$$
which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.
$endgroup$
Let $xin Omega$. Let $varepsilongt 0$ be fixed. Let $ngeqslant 1$: since $g_n(x)inoperatorname{conv}left{f_k(x),kgeqslant n right}$, there exists an integer $m=m(x,n)geqslant n$ and numbers $lambda_k=lambda_k(x,n)in left[0,1right]$ such that $sum_{k=n}^mlambda_k=1$ and
$$
leftlvert g_n(x)-sum_{k=n}^m lambda_kf_k(x)rightrvertlt varepsilon.
$$
Since $sum_{k=n}^mlambda_kf(x)=f(x)$, it follows that
begin{align}
leftlvert g_n(x)-f(x) rightrvert &=leftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x)+sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert \
&leqslantleftlvert g_n(x)- sum_{k=n}^m lambda_kf_k(x) rightrvert+leftlvert sum_{k=n}^m lambda_kf_k(x)
-lambda_kf(x) rightrvert\
&leqslantvarepsilon+ sum_{k=n}^m lambda_kleftlvert f_k(x)
- f(x) rightrvert\
&leqslant varepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert sum_{k=n}^m lambda_k.
end{align}
We got that for all $xinOmega$ and all positive $varepsilon$ and all integer $n$,
$$leftlvert g_n(x)-f(x) rightrvertleqslantvarepsilon+sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert
$$
hence letting $varepsilonto 0$ gives
$$leftlvert g_n(x)-f(x) rightrvertleqslant sup_{kgeqslant n}leftlvert f_k(x)
- f(x) rightrvert,
$$
which is sufficient to derive the almost sure convergence of $(g_n)$ to $f$.
answered Dec 11 '18 at 9:40
Davide GiraudoDavide Giraudo
126k16151263
126k16151263
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032830%2fshowing-weak-convergence-in-sigmalp-lp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is "conv" of an infinite set the closure of all the finite convex combinations or just the collection of the finite convex combinations?
$endgroup$
– Davide Giraudo
Dec 11 '18 at 9:27