Finding the Upper Bound of the difference between the Inverse of the 2 matrix












0












$begingroup$


Given that $ K = A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1}$, we need to find the upper bound of $K$ where matrix $A = C + Irho$ and $ B = C_{x} + Irho $ has dimension $ntimes n$, $ C = RDR^{T}$ where $D$ is a diagonal matrix whose eigenvalues are in descending order and $C$ is a matrix of full rank and $C_{x}$ is an approximated matrix and $rho$ is a constant. If we partition $C$ as
begin{equation}
C =
left({begin{array}{cc} R_{m} & R_{(n-m)} end{array}}right)
left(begin{array}{cc} D_{mm} & 0\ 0 & D_{(n-m)(n-m)} end{array}right)
left(begin{array}{c} R'_m \ R'_{(n-m)} end{array}right)
end{equation}



Where by Eckart - Young theorem $ C_{x} = R_{m}D_{m}R_{m}^T$.



Is it right to proceed this way?



First, break $K$ into 2 parts, thus $ A^{-1} - B^{-1} $ and $ A^{-1} - A^{-1}BA^{-1} $ and using the fact that
$$ parallel A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1} parallel_F ;leq ;parallel A^{-1} - B^{-1}parallel_F + parallel A^{-1} - A^{-1}BA^{-1} parallel_{F} $$
And considering first



begin{eqnarray}
parallel A^{-1} - B^{-1}parallel_F ^2 & = & parallel ( C + rho)^{-1} - (C_x + rho)^{-1}parallel_F ^2 \
& = & parallel rho^{-2}R_{n-m}(D_{n-m} + rho^{-1})^{-1}R_{n-m}^Tparallel_F^2 quad text { That is by substitution }\
& = & rho^{-2}{tr bigg ( R_{n-m}(D_{n-m}^{-2} +rho^{-1})^{-2}R_{n-m}^{T} bigg )}\
& = & rho^{-2} { sum_{m+1}^{n} bigg(frac{1}{lambda_{i}^2} + frac{1}{rho}bigg)^2}\
end{eqnarray}



Thus the above was achieved by using the Woodbury identity and using the fact that $R_{n-m}^{T}R_{n-m} =I $.



Before I proceed, is this idea correct ? If not can anyone guide me on how to start? And what about the second part?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Given that $ K = A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1}$, we need to find the upper bound of $K$ where matrix $A = C + Irho$ and $ B = C_{x} + Irho $ has dimension $ntimes n$, $ C = RDR^{T}$ where $D$ is a diagonal matrix whose eigenvalues are in descending order and $C$ is a matrix of full rank and $C_{x}$ is an approximated matrix and $rho$ is a constant. If we partition $C$ as
    begin{equation}
    C =
    left({begin{array}{cc} R_{m} & R_{(n-m)} end{array}}right)
    left(begin{array}{cc} D_{mm} & 0\ 0 & D_{(n-m)(n-m)} end{array}right)
    left(begin{array}{c} R'_m \ R'_{(n-m)} end{array}right)
    end{equation}



    Where by Eckart - Young theorem $ C_{x} = R_{m}D_{m}R_{m}^T$.



    Is it right to proceed this way?



    First, break $K$ into 2 parts, thus $ A^{-1} - B^{-1} $ and $ A^{-1} - A^{-1}BA^{-1} $ and using the fact that
    $$ parallel A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1} parallel_F ;leq ;parallel A^{-1} - B^{-1}parallel_F + parallel A^{-1} - A^{-1}BA^{-1} parallel_{F} $$
    And considering first



    begin{eqnarray}
    parallel A^{-1} - B^{-1}parallel_F ^2 & = & parallel ( C + rho)^{-1} - (C_x + rho)^{-1}parallel_F ^2 \
    & = & parallel rho^{-2}R_{n-m}(D_{n-m} + rho^{-1})^{-1}R_{n-m}^Tparallel_F^2 quad text { That is by substitution }\
    & = & rho^{-2}{tr bigg ( R_{n-m}(D_{n-m}^{-2} +rho^{-1})^{-2}R_{n-m}^{T} bigg )}\
    & = & rho^{-2} { sum_{m+1}^{n} bigg(frac{1}{lambda_{i}^2} + frac{1}{rho}bigg)^2}\
    end{eqnarray}



    Thus the above was achieved by using the Woodbury identity and using the fact that $R_{n-m}^{T}R_{n-m} =I $.



    Before I proceed, is this idea correct ? If not can anyone guide me on how to start? And what about the second part?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Given that $ K = A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1}$, we need to find the upper bound of $K$ where matrix $A = C + Irho$ and $ B = C_{x} + Irho $ has dimension $ntimes n$, $ C = RDR^{T}$ where $D$ is a diagonal matrix whose eigenvalues are in descending order and $C$ is a matrix of full rank and $C_{x}$ is an approximated matrix and $rho$ is a constant. If we partition $C$ as
      begin{equation}
      C =
      left({begin{array}{cc} R_{m} & R_{(n-m)} end{array}}right)
      left(begin{array}{cc} D_{mm} & 0\ 0 & D_{(n-m)(n-m)} end{array}right)
      left(begin{array}{c} R'_m \ R'_{(n-m)} end{array}right)
      end{equation}



      Where by Eckart - Young theorem $ C_{x} = R_{m}D_{m}R_{m}^T$.



      Is it right to proceed this way?



      First, break $K$ into 2 parts, thus $ A^{-1} - B^{-1} $ and $ A^{-1} - A^{-1}BA^{-1} $ and using the fact that
      $$ parallel A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1} parallel_F ;leq ;parallel A^{-1} - B^{-1}parallel_F + parallel A^{-1} - A^{-1}BA^{-1} parallel_{F} $$
      And considering first



      begin{eqnarray}
      parallel A^{-1} - B^{-1}parallel_F ^2 & = & parallel ( C + rho)^{-1} - (C_x + rho)^{-1}parallel_F ^2 \
      & = & parallel rho^{-2}R_{n-m}(D_{n-m} + rho^{-1})^{-1}R_{n-m}^Tparallel_F^2 quad text { That is by substitution }\
      & = & rho^{-2}{tr bigg ( R_{n-m}(D_{n-m}^{-2} +rho^{-1})^{-2}R_{n-m}^{T} bigg )}\
      & = & rho^{-2} { sum_{m+1}^{n} bigg(frac{1}{lambda_{i}^2} + frac{1}{rho}bigg)^2}\
      end{eqnarray}



      Thus the above was achieved by using the Woodbury identity and using the fact that $R_{n-m}^{T}R_{n-m} =I $.



      Before I proceed, is this idea correct ? If not can anyone guide me on how to start? And what about the second part?










      share|cite|improve this question









      $endgroup$




      Given that $ K = A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1}$, we need to find the upper bound of $K$ where matrix $A = C + Irho$ and $ B = C_{x} + Irho $ has dimension $ntimes n$, $ C = RDR^{T}$ where $D$ is a diagonal matrix whose eigenvalues are in descending order and $C$ is a matrix of full rank and $C_{x}$ is an approximated matrix and $rho$ is a constant. If we partition $C$ as
      begin{equation}
      C =
      left({begin{array}{cc} R_{m} & R_{(n-m)} end{array}}right)
      left(begin{array}{cc} D_{mm} & 0\ 0 & D_{(n-m)(n-m)} end{array}right)
      left(begin{array}{c} R'_m \ R'_{(n-m)} end{array}right)
      end{equation}



      Where by Eckart - Young theorem $ C_{x} = R_{m}D_{m}R_{m}^T$.



      Is it right to proceed this way?



      First, break $K$ into 2 parts, thus $ A^{-1} - B^{-1} $ and $ A^{-1} - A^{-1}BA^{-1} $ and using the fact that
      $$ parallel A^{-1} - B^{-1} + A^{-1} - A^{-1}BA^{-1} parallel_F ;leq ;parallel A^{-1} - B^{-1}parallel_F + parallel A^{-1} - A^{-1}BA^{-1} parallel_{F} $$
      And considering first



      begin{eqnarray}
      parallel A^{-1} - B^{-1}parallel_F ^2 & = & parallel ( C + rho)^{-1} - (C_x + rho)^{-1}parallel_F ^2 \
      & = & parallel rho^{-2}R_{n-m}(D_{n-m} + rho^{-1})^{-1}R_{n-m}^Tparallel_F^2 quad text { That is by substitution }\
      & = & rho^{-2}{tr bigg ( R_{n-m}(D_{n-m}^{-2} +rho^{-1})^{-2}R_{n-m}^{T} bigg )}\
      & = & rho^{-2} { sum_{m+1}^{n} bigg(frac{1}{lambda_{i}^2} + frac{1}{rho}bigg)^2}\
      end{eqnarray}



      Thus the above was achieved by using the Woodbury identity and using the fact that $R_{n-m}^{T}R_{n-m} =I $.



      Before I proceed, is this idea correct ? If not can anyone guide me on how to start? And what about the second part?







      matrices matrix-calculus matrix-decomposition matrix-rank






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 8 '18 at 10:02









      KsmithKsmith

      213




      213






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030909%2ffinding-the-upper-bound-of-the-difference-between-the-inverse-of-the-2-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030909%2ffinding-the-upper-bound-of-the-difference-between-the-inverse-of-the-2-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Le Mesnil-Réaume

          Ida-Boy-Ed-Garten

          web3.py web3.isConnected() returns false always