Posts

Showing posts from January 17, 2019

San Marino nos Jogos Olímpicos de Inverno de 2006

Image
San Marino nos Jogos Olímpicos de Inverno de 2006 Comitê Olímpico Nacional Código do COI SMR Nome Comitato Olimpico Nazionale Sammarinese site oficial (em italiano) Jogos Olímpicos de Inverno de 2006 Sede Turim, Itália Competidores 1 em 1 esporte Porta-bandeira Cardelli Marinho Medalhas Pos. n/d 0 0 0 0 Participações nos Jogos Olímpicos Verão 1960 • 1964 • 1968 • 1972 • 1976 • 1980 • 1984 • 1988 • 1992 • 1996 • 2000 • 2004 • 2008 • 2012 • 2016 Inverno 1976 • 1980 • 1984 • 1988 • 1992 • 1994 • 1998 • 2002 • 2006 • 2010 • 2014 • 2018

Teneur

Image
Teneur Region Hauts-de-France Département Pas-de-Calais Arrondissement Arras Kanton Saint-Pol-sur-Ternoise Gemeindeverband Ternois Koordinaten 50° 27′  N , 2° 13′  O 50.451666666667 2.2191666666667 Koordinaten: 50° 27′  N , 2° 13′  O Höhe 48–134 m Fläche 6,85 km 2 Einwohner 270 (1. Januar 2015) Bevölkerungsdichte 39 Einw./km 2 Postleitzahl 62134 INSEE-Code 62808 Teneur ist eine französische Gemeinde mit 270 Einwohnern (Stand 1. Januar 2015) im Arrondissement Arras des Départements Pas-de-Calais. Sie liegt im Kanton Saint-Pol-sur-Ternoise und ist Mitglied des Kommunalverbandes Ternois. Nachbargemeinden von Teneur Crépy Équirre Bergueneuse Anvin Tilly-Capelle Érin Fleury Sehenswürdigkeiten | Kriegerdenkmal Kirche Saint-Germain Weblinks |   Commons: Teneur  – Sammlung von Bildern, Vid

Help Understanding Difference in P-Value & Critical Value Results

Image
1 $begingroup$ I'd appreciate help in understanding how changing the significance level effects the results of the t-test. I have conducted an experiment where a group of 15 participants took a test, played a game, and took the original test again. The data set follows: Round 1 (Before Game) Scores: 6, 4, 7, 8, 12, 6, 7, 5, 11, 4, 7, 1, 6, 10, 4 Round 2 (After Game) Scores: 2, 3, 7, 11, 11, 9, 7, 12, 5, 15, 11, 11, 7, 4, 7 mean test score before game play: 6.53 mean test score after game play: 8.13 Accordingly I formulated a null hypothesis that game play does not effect test scores and an alternative hypothesis that game play increases scores (see below). Using the data and R I calculated the t-statistic, critical value, and p-value $H_0: mu_0 = 6.53$ and $H_1: mu_1 > 6.53$ $