Cylindrical Frame Field












0












$begingroup$


Let E be the cylindrical frame field
$E_1 = costheta U_1 + sintheta U_2, E_2 = − sintheta U_1 + costheta U_2, E_3 = U_3$



(a) Starting from the basic cylindrical equations $x = r costheta, y = r sintheta, z = z$, show that the dual 1-forms are $θ_1 = dr, θ_2 = rdtheta, θ_3 = dz$.



I started by taking the derivatives of E however, I'm not sure if that's the right first step or not. Any guidance on this please? Thanks!










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let E be the cylindrical frame field
    $E_1 = costheta U_1 + sintheta U_2, E_2 = − sintheta U_1 + costheta U_2, E_3 = U_3$



    (a) Starting from the basic cylindrical equations $x = r costheta, y = r sintheta, z = z$, show that the dual 1-forms are $θ_1 = dr, θ_2 = rdtheta, θ_3 = dz$.



    I started by taking the derivatives of E however, I'm not sure if that's the right first step or not. Any guidance on this please? Thanks!










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let E be the cylindrical frame field
      $E_1 = costheta U_1 + sintheta U_2, E_2 = − sintheta U_1 + costheta U_2, E_3 = U_3$



      (a) Starting from the basic cylindrical equations $x = r costheta, y = r sintheta, z = z$, show that the dual 1-forms are $θ_1 = dr, θ_2 = rdtheta, θ_3 = dz$.



      I started by taking the derivatives of E however, I'm not sure if that's the right first step or not. Any guidance on this please? Thanks!










      share|cite|improve this question











      $endgroup$




      Let E be the cylindrical frame field
      $E_1 = costheta U_1 + sintheta U_2, E_2 = − sintheta U_1 + costheta U_2, E_3 = U_3$



      (a) Starting from the basic cylindrical equations $x = r costheta, y = r sintheta, z = z$, show that the dual 1-forms are $θ_1 = dr, θ_2 = rdtheta, θ_3 = dz$.



      I started by taking the derivatives of E however, I'm not sure if that's the right first step or not. Any guidance on this please? Thanks!







      geometry differential-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 2 '18 at 7:21









      Tianlalu

      3,08121038




      3,08121038










      asked Mar 19 '18 at 14:10









      Lola Lola

      156




      156






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :



            along $z$ direction $=dz$,



            helical arc component along circumference direction $r, d theta $, and along the radius $dr.$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2698775%2fcylindrical-frame-field%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$






                  share|cite|improve this answer









                  $endgroup$



                  One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 2 '18 at 8:53









                  Ivo TerekIvo Terek

                  45.4k952141




                  45.4k952141























                      0












                      $begingroup$

                      Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :



                      along $z$ direction $=dz$,



                      helical arc component along circumference direction $r, d theta $, and along the radius $dr.$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :



                        along $z$ direction $=dz$,



                        helical arc component along circumference direction $r, d theta $, and along the radius $dr.$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :



                          along $z$ direction $=dz$,



                          helical arc component along circumference direction $r, d theta $, and along the radius $dr.$






                          share|cite|improve this answer









                          $endgroup$



                          Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :



                          along $z$ direction $=dz$,



                          helical arc component along circumference direction $r, d theta $, and along the radius $dr.$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 2 '18 at 9:29









                          NarasimhamNarasimham

                          20.6k52158




                          20.6k52158






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2698775%2fcylindrical-frame-field%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bundesstraße 106

                              Verónica Boquete

                              Ida-Boy-Ed-Garten