Cylindrical Frame Field
$begingroup$
Let E be the cylindrical frame field
$E_1 = costheta U_1 + sintheta U_2, E_2 = − sintheta U_1 + costheta U_2, E_3 = U_3$
(a) Starting from the basic cylindrical equations $x = r costheta, y = r sintheta, z = z$, show that the dual 1-forms are $θ_1 = dr, θ_2 = rdtheta, θ_3 = dz$.
I started by taking the derivatives of E however, I'm not sure if that's the right first step or not. Any guidance on this please? Thanks!
geometry differential-geometry
$endgroup$
add a comment |
$begingroup$
Let E be the cylindrical frame field
$E_1 = costheta U_1 + sintheta U_2, E_2 = − sintheta U_1 + costheta U_2, E_3 = U_3$
(a) Starting from the basic cylindrical equations $x = r costheta, y = r sintheta, z = z$, show that the dual 1-forms are $θ_1 = dr, θ_2 = rdtheta, θ_3 = dz$.
I started by taking the derivatives of E however, I'm not sure if that's the right first step or not. Any guidance on this please? Thanks!
geometry differential-geometry
$endgroup$
add a comment |
$begingroup$
Let E be the cylindrical frame field
$E_1 = costheta U_1 + sintheta U_2, E_2 = − sintheta U_1 + costheta U_2, E_3 = U_3$
(a) Starting from the basic cylindrical equations $x = r costheta, y = r sintheta, z = z$, show that the dual 1-forms are $θ_1 = dr, θ_2 = rdtheta, θ_3 = dz$.
I started by taking the derivatives of E however, I'm not sure if that's the right first step or not. Any guidance on this please? Thanks!
geometry differential-geometry
$endgroup$
Let E be the cylindrical frame field
$E_1 = costheta U_1 + sintheta U_2, E_2 = − sintheta U_1 + costheta U_2, E_3 = U_3$
(a) Starting from the basic cylindrical equations $x = r costheta, y = r sintheta, z = z$, show that the dual 1-forms are $θ_1 = dr, θ_2 = rdtheta, θ_3 = dz$.
I started by taking the derivatives of E however, I'm not sure if that's the right first step or not. Any guidance on this please? Thanks!
geometry differential-geometry
geometry differential-geometry
edited Dec 2 '18 at 7:21
Tianlalu
3,08121038
3,08121038
asked Mar 19 '18 at 14:10
Lola Lola
156
156
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$
$endgroup$
add a comment |
$begingroup$
Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :
along $z$ direction $=dz$,
helical arc component along circumference direction $r, d theta $, and along the radius $dr.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2698775%2fcylindrical-frame-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$
$endgroup$
add a comment |
$begingroup$
One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$
$endgroup$
add a comment |
$begingroup$
One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$
$endgroup$
One way to do it is just recalling from linear algebra that the transformation between dual basis uses the inverse of the transition matrix between the original bases. Using columns whose entries are the vectors themselves requires an extra transposition. Meaning that if $$begin{pmatrix} E_1 \ E_2 \ E_3 end{pmatrix} = begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}begin{pmatrix} U_1 \ U_2 \ U_3 end{pmatrix}$$then $$begin{pmatrix} theta_1 \ theta_2 \ theta_3 end{pmatrix} = left(begin{pmatrix} cos theta & sin theta & 0 \ -sin theta & cos theta & 0 \ 0 & 0 & 1end{pmatrix}^{-1}right)^topbegin{pmatrix} dx\ dy \ dz end{pmatrix} = begin{pmatrix} cos theta ,dx + sintheta,dy \ -sin theta,dx + cos theta,dy \ dz end{pmatrix}.$$For free, $theta_3 = dz$. And sure enough, using $x = rcos theta$ and $y=r sin theta$ you get $$begin{align} theta_1 &= costheta(costheta ,dr - rsintheta,dtheta) + sintheta(sintheta,dr + rcostheta,dtheta) = dr, \ theta_2 &= -sintheta(costheta,dr-rsintheta,dtheta)+costheta(sintheta,dr+rcostheta,dtheta) = r,dtheta. end{align}$$
answered Dec 2 '18 at 8:53
Ivo TerekIvo Terek
45.4k952141
45.4k952141
add a comment |
add a comment |
$begingroup$
Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :
along $z$ direction $=dz$,
helical arc component along circumference direction $r, d theta $, and along the radius $dr.$
$endgroup$
add a comment |
$begingroup$
Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :
along $z$ direction $=dz$,
helical arc component along circumference direction $r, d theta $, and along the radius $dr.$
$endgroup$
add a comment |
$begingroup$
Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :
along $z$ direction $=dz$,
helical arc component along circumference direction $r, d theta $, and along the radius $dr.$
$endgroup$
Considering directly Cylindrical/polar coordinates for an arc $ds$ the three differentials are, :
along $z$ direction $=dz$,
helical arc component along circumference direction $r, d theta $, and along the radius $dr.$
answered Dec 2 '18 at 9:29
NarasimhamNarasimham
20.6k52158
20.6k52158
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2698775%2fcylindrical-frame-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown