Posts

Showing posts from December 19, 2018

Jordan form of the matrices of a group

Image
up vote 1 down vote favorite Let's consider a set of $m$ generic square matricies $(N;N) $ defined on $R$ which forms a group. Chosen one of these $ m $ matrices, I know that, by changing the base on my vectorial space, I can obtain a diagonal matrix or at least a matrix in a Jordan form. My question is, does exist a particular change of basis rapresented by the matrix $T$ , which diagonalizes or puts in Jordan form all the matrices of the group? If so, how is this matrix $T$ ? linear-algebra jordan-normal-form share | cite | improve this question asked Nov 24 at 16:54 Landau 44 7

Zibido San Giacomo

Image
Zibido San Giacomo Staat Italien Region Lombardei Metropolitanstadt Mailand (MI) Koordinaten 45° 22′  N , 9° 7′  O 45.366666666667 9.1166666666667 111 Koordinaten: 45° 22′ 0″  N , 9° 7′ 0″  O Höhe 111  m s.l.m. Fläche 24,60 km² Einwohner 6.856 (31. Dez. 2016) [1] Bevölkerungsdichte 279 Einw./km² Postleitzahl 20080 Vorwahl 02 ISTAT-Nummer 015247 Volksbezeichnung Zibidesi Schutzpatron San Giacomo il Maggiore Website http://www.zibidosg.net/ Zibido San Giacomo ist eine Gemeinde mit 6856 Einwohnern (Stand 31. Dezember 2016) in der Metropolitanstadt Mailand, Region Lombardei. Die Nachbarorte von Zibido San Giacomo sind Trezzano sul Naviglio, Buccinasco, Gaggiano, Assago, Rozzano, Noviglio, Basiglio, Lacchiarella und Binasco. Inhaltsverzeichnis 1 Persönlichkeiten 2 Demografie 3 Einzelnachweise 4 Weblinks Persönlichkeiten | Italo Astolfi

Time taken to fill up the bucket

Image
up vote -1 down vote favorite An empty bucket has a pipe in it. Fluid enters at x l/second. It exits xl/second for each y l in bucket. How long will it take to fill bucket with z l of fluid? differential-equations share | cite | improve this question edited Nov 24 at 22:29 asked Nov 24 at 16:57 Arjun C 1 1 1