a question on partial isometry












1














enter image description here
This is a statement from wikipedia.I don't understand why can we deduce that $C$ is a partial isometry if $A^*A=B^*B$.










share|cite|improve this question



























    1














    enter image description here
    This is a statement from wikipedia.I don't understand why can we deduce that $C$ is a partial isometry if $A^*A=B^*B$.










    share|cite|improve this question

























      1












      1








      1







      enter image description here
      This is a statement from wikipedia.I don't understand why can we deduce that $C$ is a partial isometry if $A^*A=B^*B$.










      share|cite|improve this question













      enter image description here
      This is a statement from wikipedia.I don't understand why can we deduce that $C$ is a partial isometry if $A^*A=B^*B$.







      operator-theory operator-algebras c-star-algebras von-neumann-algebras






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 26 at 1:32









      mathrookie

      800512




      800512






















          1 Answer
          1






          active

          oldest

          votes


















          1














          You have
          $$
          |CBx|^2=langle B^*C^*CBx,xrangle=langle A^*Ax,xrangle=langle B^*Bx,xrangle=|Bx|^2.
          $$

          So $C$ is isometric on $operatorname{ran}B$, and so on $overline{operatorname{ran}B}$. On the orthogonal complement, it is $0$ by definition. So $C$ is a partial isometry.






          share|cite|improve this answer





















          • You mean that $kerC=bar{ranB}^perp$ ,but if $xin bar{ran(B)}$,why can we have $Cxneq 0$?
            – mathrookie
            Dec 5 at 0:52












          • Because $C$ is isometric on $operatorname{ran} B$.
            – Martin Argerami
            Dec 5 at 1:56











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013682%2fa-question-on-partial-isometry%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          You have
          $$
          |CBx|^2=langle B^*C^*CBx,xrangle=langle A^*Ax,xrangle=langle B^*Bx,xrangle=|Bx|^2.
          $$

          So $C$ is isometric on $operatorname{ran}B$, and so on $overline{operatorname{ran}B}$. On the orthogonal complement, it is $0$ by definition. So $C$ is a partial isometry.






          share|cite|improve this answer





















          • You mean that $kerC=bar{ranB}^perp$ ,but if $xin bar{ran(B)}$,why can we have $Cxneq 0$?
            – mathrookie
            Dec 5 at 0:52












          • Because $C$ is isometric on $operatorname{ran} B$.
            – Martin Argerami
            Dec 5 at 1:56
















          1














          You have
          $$
          |CBx|^2=langle B^*C^*CBx,xrangle=langle A^*Ax,xrangle=langle B^*Bx,xrangle=|Bx|^2.
          $$

          So $C$ is isometric on $operatorname{ran}B$, and so on $overline{operatorname{ran}B}$. On the orthogonal complement, it is $0$ by definition. So $C$ is a partial isometry.






          share|cite|improve this answer





















          • You mean that $kerC=bar{ranB}^perp$ ,but if $xin bar{ran(B)}$,why can we have $Cxneq 0$?
            – mathrookie
            Dec 5 at 0:52












          • Because $C$ is isometric on $operatorname{ran} B$.
            – Martin Argerami
            Dec 5 at 1:56














          1












          1








          1






          You have
          $$
          |CBx|^2=langle B^*C^*CBx,xrangle=langle A^*Ax,xrangle=langle B^*Bx,xrangle=|Bx|^2.
          $$

          So $C$ is isometric on $operatorname{ran}B$, and so on $overline{operatorname{ran}B}$. On the orthogonal complement, it is $0$ by definition. So $C$ is a partial isometry.






          share|cite|improve this answer












          You have
          $$
          |CBx|^2=langle B^*C^*CBx,xrangle=langle A^*Ax,xrangle=langle B^*Bx,xrangle=|Bx|^2.
          $$

          So $C$ is isometric on $operatorname{ran}B$, and so on $overline{operatorname{ran}B}$. On the orthogonal complement, it is $0$ by definition. So $C$ is a partial isometry.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 26 at 2:34









          Martin Argerami

          123k1176174




          123k1176174












          • You mean that $kerC=bar{ranB}^perp$ ,but if $xin bar{ran(B)}$,why can we have $Cxneq 0$?
            – mathrookie
            Dec 5 at 0:52












          • Because $C$ is isometric on $operatorname{ran} B$.
            – Martin Argerami
            Dec 5 at 1:56


















          • You mean that $kerC=bar{ranB}^perp$ ,but if $xin bar{ran(B)}$,why can we have $Cxneq 0$?
            – mathrookie
            Dec 5 at 0:52












          • Because $C$ is isometric on $operatorname{ran} B$.
            – Martin Argerami
            Dec 5 at 1:56
















          You mean that $kerC=bar{ranB}^perp$ ,but if $xin bar{ran(B)}$,why can we have $Cxneq 0$?
          – mathrookie
          Dec 5 at 0:52






          You mean that $kerC=bar{ranB}^perp$ ,but if $xin bar{ran(B)}$,why can we have $Cxneq 0$?
          – mathrookie
          Dec 5 at 0:52














          Because $C$ is isometric on $operatorname{ran} B$.
          – Martin Argerami
          Dec 5 at 1:56




          Because $C$ is isometric on $operatorname{ran} B$.
          – Martin Argerami
          Dec 5 at 1:56


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013682%2fa-question-on-partial-isometry%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten