How to show that Jacobi sine function is doubly periodic
The Jacobi sine function can be defined using two definitions. The first is $operatorname{sn}(u,m)=sin(phi)$ where $u=int_0^{phi}frac{dtheta}{sqrt{1-msin^2theta}}$.
Alternativey it may be defined as the function satisfying the following equation $$(operatorname{sn}')^2+ (operatorname{sn}^2−1)(1−k^2operatorname{sn}^2) = 0.$$
It is known that this function is supposed to be elliptic thus doubly periodic, I have no idea how this follows from any of the two definitions any help will be much appreciated.
complex-analysis elliptic-functions
add a comment |
The Jacobi sine function can be defined using two definitions. The first is $operatorname{sn}(u,m)=sin(phi)$ where $u=int_0^{phi}frac{dtheta}{sqrt{1-msin^2theta}}$.
Alternativey it may be defined as the function satisfying the following equation $$(operatorname{sn}')^2+ (operatorname{sn}^2−1)(1−k^2operatorname{sn}^2) = 0.$$
It is known that this function is supposed to be elliptic thus doubly periodic, I have no idea how this follows from any of the two definitions any help will be much appreciated.
complex-analysis elliptic-functions
add a comment |
The Jacobi sine function can be defined using two definitions. The first is $operatorname{sn}(u,m)=sin(phi)$ where $u=int_0^{phi}frac{dtheta}{sqrt{1-msin^2theta}}$.
Alternativey it may be defined as the function satisfying the following equation $$(operatorname{sn}')^2+ (operatorname{sn}^2−1)(1−k^2operatorname{sn}^2) = 0.$$
It is known that this function is supposed to be elliptic thus doubly periodic, I have no idea how this follows from any of the two definitions any help will be much appreciated.
complex-analysis elliptic-functions
The Jacobi sine function can be defined using two definitions. The first is $operatorname{sn}(u,m)=sin(phi)$ where $u=int_0^{phi}frac{dtheta}{sqrt{1-msin^2theta}}$.
Alternativey it may be defined as the function satisfying the following equation $$(operatorname{sn}')^2+ (operatorname{sn}^2−1)(1−k^2operatorname{sn}^2) = 0.$$
It is known that this function is supposed to be elliptic thus doubly periodic, I have no idea how this follows from any of the two definitions any help will be much appreciated.
complex-analysis elliptic-functions
complex-analysis elliptic-functions
edited Nov 26 at 4:08
Tianlalu
3,04521038
3,04521038
asked Nov 26 at 1:41
TheGeometer
920519
920519
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
We let $m=k^2$, $k'=sqrt{1-k^2}$ and introduce $$K=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}=int_0^{frac {pi}2}frac{mathrm dvarphi}{sqrt{1-k^2sin^2varphi}}$$
and
$$K'=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k'^2t^2)}}.$$
Claim: $$operatorname{sn}(K+iK')=dfrac 1k,quadoperatorname{cn}(K+iK')=-dfrac {ik'}k,quad operatorname{dn}(K+iK')=0.$$
Proof: By changing the subject $k^2t^2=1-k'^2t^2$,
begin{align*}
int_0^frac 1kfrac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}&=underbrace{int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}}_{=K}+underbrace{iint_1^frac 1kfrac{mathrm dt}{sqrt{(t^2-1)(1-k^2t^2)}}}_{=iK'}.tag*{$square$}\
end{align*}
We use addition theorem (which can be derived from the definitions) and the fact
$$operatorname{sn} K=1,quad operatorname{cn} K=0,quad operatorname{dn} K= k'$$
to get
$$operatorname{sn}(u+K)=frac{operatorname{cn} u operatorname{dn} u}{1-k^2 operatorname{sn}^2u}=frac{operatorname{cn} u}{operatorname{dn}u}=operatorname{cd}u.tag{1}$$
Similarly we can get
$$operatorname{cn}(u+K)=-k'operatorname{sd}u,quad operatorname{dn}(u+K)=k'operatorname{nd}u.tag{2}$$
Add $K$ one more time,
$$operatorname{sn}(u+2K)=-operatorname{sn}u,quadoperatorname{cn}(u+2K)=-operatorname{cn}u,quad operatorname{dn}(u+2K)=operatorname{dn}u.tag{3}$$
Add $2K$ again,
$$operatorname{sn}(u+4K)=operatorname{sn}u,quadoperatorname{cn}(u+4K)=operatorname{cn}u.tag{4}$$
Therefore, $operatorname{sn} u,operatorname{cn} u$ are $4K$-periodic while $operatorname{dn} u$ is $2K$-periodic.
Next, we use addition theorem and the claim to get
begin{align*}
operatorname{sn}(u+K+iK')&=k^{-1}operatorname{dc}u,\
operatorname{cn}(u+K+iK')&=-ik'k^{-1}operatorname{nc}u,\
operatorname{dn}(u+K+iK')&=ik'operatorname{sc}u.tag{5}
end{align*}
Add $K+K'i$ once more,
begin{align*}
operatorname{sn}(u+2K+2K'i)&=-operatorname{sn}u,\
operatorname{cn}(u+2K+2K'i)&=operatorname{cn}u,\
operatorname{dn}(u+2K+2K'i)&=-operatorname{dn}u.tag{6}
end{align*}
Therefore, $operatorname{sn} u,operatorname{dn} u$ are $(4K+4K'i)$-periodic while $operatorname{cn} u$ is $(2K+2K'i)$-periodic.
It is nasty to compute $+K'i$ directly. Instead, we use
begin{align*}
operatorname{sn}(u+K'i)=operatorname{sn}(u-K+K+K'i)=k^{-1}operatorname{sn}(u-K)=k^{-1}operatorname{ns}u.tag{7}
end{align*}
We also get
begin{align*}
operatorname{cn}(u+K'i)=-ik^{-1}operatorname{ds}u,quad operatorname{dn}(u+K'i)=-ioperatorname{cs}u.tag{8}
end{align*}
Add $K'i$ again,
begin{align*}
operatorname{sn}(u+2K'i)=operatorname{sn}u,quadoperatorname{cn}(u+2K'i)=-operatorname{cn}u,quad operatorname{dn}(u+2K'i)=-operatorname{dn}u.tag{9}
end{align*}
Therefore, $operatorname{sn} u$ is $2K'i$-periodic while $operatorname{cn} u,operatorname{dn} u$ are $4K'i$-periodic.
Combining the above results,
$operatorname{sn} u$ is $(4K,2K'i)$-periodic;
$operatorname{cn} u$ is $(4K,2K+2K'i)$-periodic;
$operatorname{dn} u$ is $(2K,4K'i)$-periodic.
Thank you so much for your answer is great!
– TheGeometer
Nov 26 at 4:58
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013692%2fhow-to-show-that-jacobi-sine-function-is-doubly-periodic%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
We let $m=k^2$, $k'=sqrt{1-k^2}$ and introduce $$K=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}=int_0^{frac {pi}2}frac{mathrm dvarphi}{sqrt{1-k^2sin^2varphi}}$$
and
$$K'=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k'^2t^2)}}.$$
Claim: $$operatorname{sn}(K+iK')=dfrac 1k,quadoperatorname{cn}(K+iK')=-dfrac {ik'}k,quad operatorname{dn}(K+iK')=0.$$
Proof: By changing the subject $k^2t^2=1-k'^2t^2$,
begin{align*}
int_0^frac 1kfrac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}&=underbrace{int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}}_{=K}+underbrace{iint_1^frac 1kfrac{mathrm dt}{sqrt{(t^2-1)(1-k^2t^2)}}}_{=iK'}.tag*{$square$}\
end{align*}
We use addition theorem (which can be derived from the definitions) and the fact
$$operatorname{sn} K=1,quad operatorname{cn} K=0,quad operatorname{dn} K= k'$$
to get
$$operatorname{sn}(u+K)=frac{operatorname{cn} u operatorname{dn} u}{1-k^2 operatorname{sn}^2u}=frac{operatorname{cn} u}{operatorname{dn}u}=operatorname{cd}u.tag{1}$$
Similarly we can get
$$operatorname{cn}(u+K)=-k'operatorname{sd}u,quad operatorname{dn}(u+K)=k'operatorname{nd}u.tag{2}$$
Add $K$ one more time,
$$operatorname{sn}(u+2K)=-operatorname{sn}u,quadoperatorname{cn}(u+2K)=-operatorname{cn}u,quad operatorname{dn}(u+2K)=operatorname{dn}u.tag{3}$$
Add $2K$ again,
$$operatorname{sn}(u+4K)=operatorname{sn}u,quadoperatorname{cn}(u+4K)=operatorname{cn}u.tag{4}$$
Therefore, $operatorname{sn} u,operatorname{cn} u$ are $4K$-periodic while $operatorname{dn} u$ is $2K$-periodic.
Next, we use addition theorem and the claim to get
begin{align*}
operatorname{sn}(u+K+iK')&=k^{-1}operatorname{dc}u,\
operatorname{cn}(u+K+iK')&=-ik'k^{-1}operatorname{nc}u,\
operatorname{dn}(u+K+iK')&=ik'operatorname{sc}u.tag{5}
end{align*}
Add $K+K'i$ once more,
begin{align*}
operatorname{sn}(u+2K+2K'i)&=-operatorname{sn}u,\
operatorname{cn}(u+2K+2K'i)&=operatorname{cn}u,\
operatorname{dn}(u+2K+2K'i)&=-operatorname{dn}u.tag{6}
end{align*}
Therefore, $operatorname{sn} u,operatorname{dn} u$ are $(4K+4K'i)$-periodic while $operatorname{cn} u$ is $(2K+2K'i)$-periodic.
It is nasty to compute $+K'i$ directly. Instead, we use
begin{align*}
operatorname{sn}(u+K'i)=operatorname{sn}(u-K+K+K'i)=k^{-1}operatorname{sn}(u-K)=k^{-1}operatorname{ns}u.tag{7}
end{align*}
We also get
begin{align*}
operatorname{cn}(u+K'i)=-ik^{-1}operatorname{ds}u,quad operatorname{dn}(u+K'i)=-ioperatorname{cs}u.tag{8}
end{align*}
Add $K'i$ again,
begin{align*}
operatorname{sn}(u+2K'i)=operatorname{sn}u,quadoperatorname{cn}(u+2K'i)=-operatorname{cn}u,quad operatorname{dn}(u+2K'i)=-operatorname{dn}u.tag{9}
end{align*}
Therefore, $operatorname{sn} u$ is $2K'i$-periodic while $operatorname{cn} u,operatorname{dn} u$ are $4K'i$-periodic.
Combining the above results,
$operatorname{sn} u$ is $(4K,2K'i)$-periodic;
$operatorname{cn} u$ is $(4K,2K+2K'i)$-periodic;
$operatorname{dn} u$ is $(2K,4K'i)$-periodic.
Thank you so much for your answer is great!
– TheGeometer
Nov 26 at 4:58
add a comment |
We let $m=k^2$, $k'=sqrt{1-k^2}$ and introduce $$K=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}=int_0^{frac {pi}2}frac{mathrm dvarphi}{sqrt{1-k^2sin^2varphi}}$$
and
$$K'=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k'^2t^2)}}.$$
Claim: $$operatorname{sn}(K+iK')=dfrac 1k,quadoperatorname{cn}(K+iK')=-dfrac {ik'}k,quad operatorname{dn}(K+iK')=0.$$
Proof: By changing the subject $k^2t^2=1-k'^2t^2$,
begin{align*}
int_0^frac 1kfrac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}&=underbrace{int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}}_{=K}+underbrace{iint_1^frac 1kfrac{mathrm dt}{sqrt{(t^2-1)(1-k^2t^2)}}}_{=iK'}.tag*{$square$}\
end{align*}
We use addition theorem (which can be derived from the definitions) and the fact
$$operatorname{sn} K=1,quad operatorname{cn} K=0,quad operatorname{dn} K= k'$$
to get
$$operatorname{sn}(u+K)=frac{operatorname{cn} u operatorname{dn} u}{1-k^2 operatorname{sn}^2u}=frac{operatorname{cn} u}{operatorname{dn}u}=operatorname{cd}u.tag{1}$$
Similarly we can get
$$operatorname{cn}(u+K)=-k'operatorname{sd}u,quad operatorname{dn}(u+K)=k'operatorname{nd}u.tag{2}$$
Add $K$ one more time,
$$operatorname{sn}(u+2K)=-operatorname{sn}u,quadoperatorname{cn}(u+2K)=-operatorname{cn}u,quad operatorname{dn}(u+2K)=operatorname{dn}u.tag{3}$$
Add $2K$ again,
$$operatorname{sn}(u+4K)=operatorname{sn}u,quadoperatorname{cn}(u+4K)=operatorname{cn}u.tag{4}$$
Therefore, $operatorname{sn} u,operatorname{cn} u$ are $4K$-periodic while $operatorname{dn} u$ is $2K$-periodic.
Next, we use addition theorem and the claim to get
begin{align*}
operatorname{sn}(u+K+iK')&=k^{-1}operatorname{dc}u,\
operatorname{cn}(u+K+iK')&=-ik'k^{-1}operatorname{nc}u,\
operatorname{dn}(u+K+iK')&=ik'operatorname{sc}u.tag{5}
end{align*}
Add $K+K'i$ once more,
begin{align*}
operatorname{sn}(u+2K+2K'i)&=-operatorname{sn}u,\
operatorname{cn}(u+2K+2K'i)&=operatorname{cn}u,\
operatorname{dn}(u+2K+2K'i)&=-operatorname{dn}u.tag{6}
end{align*}
Therefore, $operatorname{sn} u,operatorname{dn} u$ are $(4K+4K'i)$-periodic while $operatorname{cn} u$ is $(2K+2K'i)$-periodic.
It is nasty to compute $+K'i$ directly. Instead, we use
begin{align*}
operatorname{sn}(u+K'i)=operatorname{sn}(u-K+K+K'i)=k^{-1}operatorname{sn}(u-K)=k^{-1}operatorname{ns}u.tag{7}
end{align*}
We also get
begin{align*}
operatorname{cn}(u+K'i)=-ik^{-1}operatorname{ds}u,quad operatorname{dn}(u+K'i)=-ioperatorname{cs}u.tag{8}
end{align*}
Add $K'i$ again,
begin{align*}
operatorname{sn}(u+2K'i)=operatorname{sn}u,quadoperatorname{cn}(u+2K'i)=-operatorname{cn}u,quad operatorname{dn}(u+2K'i)=-operatorname{dn}u.tag{9}
end{align*}
Therefore, $operatorname{sn} u$ is $2K'i$-periodic while $operatorname{cn} u,operatorname{dn} u$ are $4K'i$-periodic.
Combining the above results,
$operatorname{sn} u$ is $(4K,2K'i)$-periodic;
$operatorname{cn} u$ is $(4K,2K+2K'i)$-periodic;
$operatorname{dn} u$ is $(2K,4K'i)$-periodic.
Thank you so much for your answer is great!
– TheGeometer
Nov 26 at 4:58
add a comment |
We let $m=k^2$, $k'=sqrt{1-k^2}$ and introduce $$K=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}=int_0^{frac {pi}2}frac{mathrm dvarphi}{sqrt{1-k^2sin^2varphi}}$$
and
$$K'=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k'^2t^2)}}.$$
Claim: $$operatorname{sn}(K+iK')=dfrac 1k,quadoperatorname{cn}(K+iK')=-dfrac {ik'}k,quad operatorname{dn}(K+iK')=0.$$
Proof: By changing the subject $k^2t^2=1-k'^2t^2$,
begin{align*}
int_0^frac 1kfrac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}&=underbrace{int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}}_{=K}+underbrace{iint_1^frac 1kfrac{mathrm dt}{sqrt{(t^2-1)(1-k^2t^2)}}}_{=iK'}.tag*{$square$}\
end{align*}
We use addition theorem (which can be derived from the definitions) and the fact
$$operatorname{sn} K=1,quad operatorname{cn} K=0,quad operatorname{dn} K= k'$$
to get
$$operatorname{sn}(u+K)=frac{operatorname{cn} u operatorname{dn} u}{1-k^2 operatorname{sn}^2u}=frac{operatorname{cn} u}{operatorname{dn}u}=operatorname{cd}u.tag{1}$$
Similarly we can get
$$operatorname{cn}(u+K)=-k'operatorname{sd}u,quad operatorname{dn}(u+K)=k'operatorname{nd}u.tag{2}$$
Add $K$ one more time,
$$operatorname{sn}(u+2K)=-operatorname{sn}u,quadoperatorname{cn}(u+2K)=-operatorname{cn}u,quad operatorname{dn}(u+2K)=operatorname{dn}u.tag{3}$$
Add $2K$ again,
$$operatorname{sn}(u+4K)=operatorname{sn}u,quadoperatorname{cn}(u+4K)=operatorname{cn}u.tag{4}$$
Therefore, $operatorname{sn} u,operatorname{cn} u$ are $4K$-periodic while $operatorname{dn} u$ is $2K$-periodic.
Next, we use addition theorem and the claim to get
begin{align*}
operatorname{sn}(u+K+iK')&=k^{-1}operatorname{dc}u,\
operatorname{cn}(u+K+iK')&=-ik'k^{-1}operatorname{nc}u,\
operatorname{dn}(u+K+iK')&=ik'operatorname{sc}u.tag{5}
end{align*}
Add $K+K'i$ once more,
begin{align*}
operatorname{sn}(u+2K+2K'i)&=-operatorname{sn}u,\
operatorname{cn}(u+2K+2K'i)&=operatorname{cn}u,\
operatorname{dn}(u+2K+2K'i)&=-operatorname{dn}u.tag{6}
end{align*}
Therefore, $operatorname{sn} u,operatorname{dn} u$ are $(4K+4K'i)$-periodic while $operatorname{cn} u$ is $(2K+2K'i)$-periodic.
It is nasty to compute $+K'i$ directly. Instead, we use
begin{align*}
operatorname{sn}(u+K'i)=operatorname{sn}(u-K+K+K'i)=k^{-1}operatorname{sn}(u-K)=k^{-1}operatorname{ns}u.tag{7}
end{align*}
We also get
begin{align*}
operatorname{cn}(u+K'i)=-ik^{-1}operatorname{ds}u,quad operatorname{dn}(u+K'i)=-ioperatorname{cs}u.tag{8}
end{align*}
Add $K'i$ again,
begin{align*}
operatorname{sn}(u+2K'i)=operatorname{sn}u,quadoperatorname{cn}(u+2K'i)=-operatorname{cn}u,quad operatorname{dn}(u+2K'i)=-operatorname{dn}u.tag{9}
end{align*}
Therefore, $operatorname{sn} u$ is $2K'i$-periodic while $operatorname{cn} u,operatorname{dn} u$ are $4K'i$-periodic.
Combining the above results,
$operatorname{sn} u$ is $(4K,2K'i)$-periodic;
$operatorname{cn} u$ is $(4K,2K+2K'i)$-periodic;
$operatorname{dn} u$ is $(2K,4K'i)$-periodic.
We let $m=k^2$, $k'=sqrt{1-k^2}$ and introduce $$K=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}=int_0^{frac {pi}2}frac{mathrm dvarphi}{sqrt{1-k^2sin^2varphi}}$$
and
$$K'=int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k'^2t^2)}}.$$
Claim: $$operatorname{sn}(K+iK')=dfrac 1k,quadoperatorname{cn}(K+iK')=-dfrac {ik'}k,quad operatorname{dn}(K+iK')=0.$$
Proof: By changing the subject $k^2t^2=1-k'^2t^2$,
begin{align*}
int_0^frac 1kfrac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}&=underbrace{int_0^1frac{mathrm dt}{sqrt{(1-t^2)(1-k^2t^2)}}}_{=K}+underbrace{iint_1^frac 1kfrac{mathrm dt}{sqrt{(t^2-1)(1-k^2t^2)}}}_{=iK'}.tag*{$square$}\
end{align*}
We use addition theorem (which can be derived from the definitions) and the fact
$$operatorname{sn} K=1,quad operatorname{cn} K=0,quad operatorname{dn} K= k'$$
to get
$$operatorname{sn}(u+K)=frac{operatorname{cn} u operatorname{dn} u}{1-k^2 operatorname{sn}^2u}=frac{operatorname{cn} u}{operatorname{dn}u}=operatorname{cd}u.tag{1}$$
Similarly we can get
$$operatorname{cn}(u+K)=-k'operatorname{sd}u,quad operatorname{dn}(u+K)=k'operatorname{nd}u.tag{2}$$
Add $K$ one more time,
$$operatorname{sn}(u+2K)=-operatorname{sn}u,quadoperatorname{cn}(u+2K)=-operatorname{cn}u,quad operatorname{dn}(u+2K)=operatorname{dn}u.tag{3}$$
Add $2K$ again,
$$operatorname{sn}(u+4K)=operatorname{sn}u,quadoperatorname{cn}(u+4K)=operatorname{cn}u.tag{4}$$
Therefore, $operatorname{sn} u,operatorname{cn} u$ are $4K$-periodic while $operatorname{dn} u$ is $2K$-periodic.
Next, we use addition theorem and the claim to get
begin{align*}
operatorname{sn}(u+K+iK')&=k^{-1}operatorname{dc}u,\
operatorname{cn}(u+K+iK')&=-ik'k^{-1}operatorname{nc}u,\
operatorname{dn}(u+K+iK')&=ik'operatorname{sc}u.tag{5}
end{align*}
Add $K+K'i$ once more,
begin{align*}
operatorname{sn}(u+2K+2K'i)&=-operatorname{sn}u,\
operatorname{cn}(u+2K+2K'i)&=operatorname{cn}u,\
operatorname{dn}(u+2K+2K'i)&=-operatorname{dn}u.tag{6}
end{align*}
Therefore, $operatorname{sn} u,operatorname{dn} u$ are $(4K+4K'i)$-periodic while $operatorname{cn} u$ is $(2K+2K'i)$-periodic.
It is nasty to compute $+K'i$ directly. Instead, we use
begin{align*}
operatorname{sn}(u+K'i)=operatorname{sn}(u-K+K+K'i)=k^{-1}operatorname{sn}(u-K)=k^{-1}operatorname{ns}u.tag{7}
end{align*}
We also get
begin{align*}
operatorname{cn}(u+K'i)=-ik^{-1}operatorname{ds}u,quad operatorname{dn}(u+K'i)=-ioperatorname{cs}u.tag{8}
end{align*}
Add $K'i$ again,
begin{align*}
operatorname{sn}(u+2K'i)=operatorname{sn}u,quadoperatorname{cn}(u+2K'i)=-operatorname{cn}u,quad operatorname{dn}(u+2K'i)=-operatorname{dn}u.tag{9}
end{align*}
Therefore, $operatorname{sn} u$ is $2K'i$-periodic while $operatorname{cn} u,operatorname{dn} u$ are $4K'i$-periodic.
Combining the above results,
$operatorname{sn} u$ is $(4K,2K'i)$-periodic;
$operatorname{cn} u$ is $(4K,2K+2K'i)$-periodic;
$operatorname{dn} u$ is $(2K,4K'i)$-periodic.
edited Nov 26 at 4:10
answered Nov 26 at 4:04
Tianlalu
3,04521038
3,04521038
Thank you so much for your answer is great!
– TheGeometer
Nov 26 at 4:58
add a comment |
Thank you so much for your answer is great!
– TheGeometer
Nov 26 at 4:58
Thank you so much for your answer is great!
– TheGeometer
Nov 26 at 4:58
Thank you so much for your answer is great!
– TheGeometer
Nov 26 at 4:58
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013692%2fhow-to-show-that-jacobi-sine-function-is-doubly-periodic%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown