How to calculate the sum of the series $sum_{n=1}^{infty}frac{cos^3(nx)}{n^2}$?











up vote
2
down vote

favorite












As the title says, I need to calculate the sum of the function series $$sum_{n=1}^{infty}frac{cos^3(nx)}{n^2}$$ so that I can find out if the series does simple or uniform converge to something.



Usually, for problems like this I need to write the sum like a difference of sums so when we write the sums, some terms will go away, but I can't think of a way to write this one.



Can you help me?



UPDATE



I managed to show that the series is uniform convergent even if I do not know to who it converges. Still, I wonder if there is any way to calculate the sum of the series.










share|cite|improve this question




















  • 1




    The answer will involve complex dilogarithms.
    – Lord Shark the Unknown
    Nov 21 at 21:03










  • @LordSharktheUnknown Ok... it's a bit too much for me and I probably won't understand since I am not soo advanced in math knowledge. Thanks for the info anyway.
    – Ghost
    Nov 21 at 21:15

















up vote
2
down vote

favorite












As the title says, I need to calculate the sum of the function series $$sum_{n=1}^{infty}frac{cos^3(nx)}{n^2}$$ so that I can find out if the series does simple or uniform converge to something.



Usually, for problems like this I need to write the sum like a difference of sums so when we write the sums, some terms will go away, but I can't think of a way to write this one.



Can you help me?



UPDATE



I managed to show that the series is uniform convergent even if I do not know to who it converges. Still, I wonder if there is any way to calculate the sum of the series.










share|cite|improve this question




















  • 1




    The answer will involve complex dilogarithms.
    – Lord Shark the Unknown
    Nov 21 at 21:03










  • @LordSharktheUnknown Ok... it's a bit too much for me and I probably won't understand since I am not soo advanced in math knowledge. Thanks for the info anyway.
    – Ghost
    Nov 21 at 21:15















up vote
2
down vote

favorite









up vote
2
down vote

favorite











As the title says, I need to calculate the sum of the function series $$sum_{n=1}^{infty}frac{cos^3(nx)}{n^2}$$ so that I can find out if the series does simple or uniform converge to something.



Usually, for problems like this I need to write the sum like a difference of sums so when we write the sums, some terms will go away, but I can't think of a way to write this one.



Can you help me?



UPDATE



I managed to show that the series is uniform convergent even if I do not know to who it converges. Still, I wonder if there is any way to calculate the sum of the series.










share|cite|improve this question















As the title says, I need to calculate the sum of the function series $$sum_{n=1}^{infty}frac{cos^3(nx)}{n^2}$$ so that I can find out if the series does simple or uniform converge to something.



Usually, for problems like this I need to write the sum like a difference of sums so when we write the sums, some terms will go away, but I can't think of a way to write this one.



Can you help me?



UPDATE



I managed to show that the series is uniform convergent even if I do not know to who it converges. Still, I wonder if there is any way to calculate the sum of the series.







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 at 21:05









amWhy

191k27223439




191k27223439










asked Nov 21 at 20:57









Ghost

553210




553210








  • 1




    The answer will involve complex dilogarithms.
    – Lord Shark the Unknown
    Nov 21 at 21:03










  • @LordSharktheUnknown Ok... it's a bit too much for me and I probably won't understand since I am not soo advanced in math knowledge. Thanks for the info anyway.
    – Ghost
    Nov 21 at 21:15
















  • 1




    The answer will involve complex dilogarithms.
    – Lord Shark the Unknown
    Nov 21 at 21:03










  • @LordSharktheUnknown Ok... it's a bit too much for me and I probably won't understand since I am not soo advanced in math knowledge. Thanks for the info anyway.
    – Ghost
    Nov 21 at 21:15










1




1




The answer will involve complex dilogarithms.
– Lord Shark the Unknown
Nov 21 at 21:03




The answer will involve complex dilogarithms.
– Lord Shark the Unknown
Nov 21 at 21:03












@LordSharktheUnknown Ok... it's a bit too much for me and I probably won't understand since I am not soo advanced in math knowledge. Thanks for the info anyway.
– Ghost
Nov 21 at 21:15






@LordSharktheUnknown Ok... it's a bit too much for me and I probably won't understand since I am not soo advanced in math knowledge. Thanks for the info anyway.
– Ghost
Nov 21 at 21:15












2 Answers
2






active

oldest

votes

















up vote
4
down vote













$$sum_{ngeq 1}frac{cos(nx)}{n^2} = text{Re},text{Li}_2(e^{ix})$$
is a periodic and piecewise-parabolic function, as the primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$.

Since $cos^3(nx)=frac{1}{4}cos(3nx)+frac{3}{4}cos(nx)$ your function is a piecewise-parabolic function too.



In explicit terms it is a $2pi$-periodic, even function which equals $frac{3}{4}left(x-frac{pi}{3}right)left(x-frac{2pi}{3}right)$ over $[0,2pi/3]$ and $frac{3}{4}left(x-frac{2pi}{3}right)left(x-frac{4pi}{3}right)$ over $[2pi/3,pi]$.



This is very simple to derive by interpolation once the original series is evaluated at $xinleft{0,frac{pi}{3},frac{2pi}{3},pi,frac{4pi}{3},frac{5pi}{3}right}$.






share|cite|improve this answer






























    up vote
    0
    down vote













    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$




    "As the title says, I need to calculate the sum of the function series..."




    begin{equation}
    bbx{mbox{It's clear that}
    sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}} = {pi^{2} over 6phantom{^{2}}} mbox{when}
    braces{verts{x} over 2pi} = 0}
    end{equation}




    Hereafter, I'll consider the case
    $ds{braces{verts{x} over 2pi} not= 0}$.
    Lets $ds{r equiv 2pibraces{verts{x} over 2pi}}$ with $ds{r in left[0,2piright)}$. Then
    begin{align}
    &bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}} =
    sum_{n=1}^{infty}{cos^{3}pars{nverts{x}} over n^{2}} =
    sum_{n=1}^{infty}{cos^{3}pars{nr} over n^{2}} \[5mm] = &
    sum_{n=1}^{infty}{bracks{3cospars{nr} + cospars{3nr}}/4 over n^{2}}
    \[5mm] = &
    {3 over 4},Resum_{n = 1}^{infty}
    {pars{expo{ic r}}^{n} over n^{2}} +
    {1 over 4},Resum_{n = 1}^{infty}
    {pars{expo{3ic r}}^{n} over n^{2}}
    \[5mm] = &
    {3 over 4},
    Remrm{Li}_{2}pars{exppars{ic r}} +
    {1 over 4},
    Remrm{Li}_{2}pars{exppars{ictilde{r}}}
    \[2mm] &
    mbox{where}
    tilde{r} equiv 2pibraces{3r over 2pi} =
    2pibraces{3braces{verts{x} over 2pi}}
    end{align}

    $ds{mrm{Li}_{s}}$ is the
    Polylogarithm Function. Note that
    $ds{3r in left[0,6piright)}$.

    With
    Jonqui$grave{mathrm{e}}$re Inversion Formula, it's found
    begin{align}
    &left.bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}},rightvert
    _{ verts{x}/pars{2pi} not= 0}
    \[5mm] = &
    bbx{{3 over 4},bracks{pi^{2},mrm{B}_{2}pars{braces{verts{x} over 2pi}}} +
    {1 over 4},bracks{pi^{2},
    mrm{B}_{2}pars{braces{3braces{verts{x} over 2pi}}}}}
    end{align}




    $ds{mrm{B}_{n}}$ is a
    Bernoulli Polynomial.
    Note that
    $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$.
    enter image description here







    share|cite|improve this answer























      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008350%2fhow-to-calculate-the-sum-of-the-series-sum-n-1-infty-frac-cos3nxn2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      4
      down vote













      $$sum_{ngeq 1}frac{cos(nx)}{n^2} = text{Re},text{Li}_2(e^{ix})$$
      is a periodic and piecewise-parabolic function, as the primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$.

      Since $cos^3(nx)=frac{1}{4}cos(3nx)+frac{3}{4}cos(nx)$ your function is a piecewise-parabolic function too.



      In explicit terms it is a $2pi$-periodic, even function which equals $frac{3}{4}left(x-frac{pi}{3}right)left(x-frac{2pi}{3}right)$ over $[0,2pi/3]$ and $frac{3}{4}left(x-frac{2pi}{3}right)left(x-frac{4pi}{3}right)$ over $[2pi/3,pi]$.



      This is very simple to derive by interpolation once the original series is evaluated at $xinleft{0,frac{pi}{3},frac{2pi}{3},pi,frac{4pi}{3},frac{5pi}{3}right}$.






      share|cite|improve this answer



























        up vote
        4
        down vote













        $$sum_{ngeq 1}frac{cos(nx)}{n^2} = text{Re},text{Li}_2(e^{ix})$$
        is a periodic and piecewise-parabolic function, as the primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$.

        Since $cos^3(nx)=frac{1}{4}cos(3nx)+frac{3}{4}cos(nx)$ your function is a piecewise-parabolic function too.



        In explicit terms it is a $2pi$-periodic, even function which equals $frac{3}{4}left(x-frac{pi}{3}right)left(x-frac{2pi}{3}right)$ over $[0,2pi/3]$ and $frac{3}{4}left(x-frac{2pi}{3}right)left(x-frac{4pi}{3}right)$ over $[2pi/3,pi]$.



        This is very simple to derive by interpolation once the original series is evaluated at $xinleft{0,frac{pi}{3},frac{2pi}{3},pi,frac{4pi}{3},frac{5pi}{3}right}$.






        share|cite|improve this answer

























          up vote
          4
          down vote










          up vote
          4
          down vote









          $$sum_{ngeq 1}frac{cos(nx)}{n^2} = text{Re},text{Li}_2(e^{ix})$$
          is a periodic and piecewise-parabolic function, as the primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$.

          Since $cos^3(nx)=frac{1}{4}cos(3nx)+frac{3}{4}cos(nx)$ your function is a piecewise-parabolic function too.



          In explicit terms it is a $2pi$-periodic, even function which equals $frac{3}{4}left(x-frac{pi}{3}right)left(x-frac{2pi}{3}right)$ over $[0,2pi/3]$ and $frac{3}{4}left(x-frac{2pi}{3}right)left(x-frac{4pi}{3}right)$ over $[2pi/3,pi]$.



          This is very simple to derive by interpolation once the original series is evaluated at $xinleft{0,frac{pi}{3},frac{2pi}{3},pi,frac{4pi}{3},frac{5pi}{3}right}$.






          share|cite|improve this answer














          $$sum_{ngeq 1}frac{cos(nx)}{n^2} = text{Re},text{Li}_2(e^{ix})$$
          is a periodic and piecewise-parabolic function, as the primitive of the sawtooth wave $sum_{ngeq 1}frac{sin(nx)}{n}$.

          Since $cos^3(nx)=frac{1}{4}cos(3nx)+frac{3}{4}cos(nx)$ your function is a piecewise-parabolic function too.



          In explicit terms it is a $2pi$-periodic, even function which equals $frac{3}{4}left(x-frac{pi}{3}right)left(x-frac{2pi}{3}right)$ over $[0,2pi/3]$ and $frac{3}{4}left(x-frac{2pi}{3}right)left(x-frac{4pi}{3}right)$ over $[2pi/3,pi]$.



          This is very simple to derive by interpolation once the original series is evaluated at $xinleft{0,frac{pi}{3},frac{2pi}{3},pi,frac{4pi}{3},frac{5pi}{3}right}$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 21 at 22:03

























          answered Nov 21 at 21:53









          Jack D'Aurizio

          284k33275654




          284k33275654






















              up vote
              0
              down vote













              $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
              newcommand{dd}{mathrm{d}}
              newcommand{ds}[1]{displaystyle{#1}}
              newcommand{expo}[1]{,mathrm{e}^{#1},}
              newcommand{ic}{mathrm{i}}
              newcommand{mc}[1]{mathcal{#1}}
              newcommand{mrm}[1]{mathrm{#1}}
              newcommand{pars}[1]{left(,{#1},right)}
              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
              newcommand{verts}[1]{leftvert,{#1},rightvert}$




              "As the title says, I need to calculate the sum of the function series..."




              begin{equation}
              bbx{mbox{It's clear that}
              sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}} = {pi^{2} over 6phantom{^{2}}} mbox{when}
              braces{verts{x} over 2pi} = 0}
              end{equation}




              Hereafter, I'll consider the case
              $ds{braces{verts{x} over 2pi} not= 0}$.
              Lets $ds{r equiv 2pibraces{verts{x} over 2pi}}$ with $ds{r in left[0,2piright)}$. Then
              begin{align}
              &bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}} =
              sum_{n=1}^{infty}{cos^{3}pars{nverts{x}} over n^{2}} =
              sum_{n=1}^{infty}{cos^{3}pars{nr} over n^{2}} \[5mm] = &
              sum_{n=1}^{infty}{bracks{3cospars{nr} + cospars{3nr}}/4 over n^{2}}
              \[5mm] = &
              {3 over 4},Resum_{n = 1}^{infty}
              {pars{expo{ic r}}^{n} over n^{2}} +
              {1 over 4},Resum_{n = 1}^{infty}
              {pars{expo{3ic r}}^{n} over n^{2}}
              \[5mm] = &
              {3 over 4},
              Remrm{Li}_{2}pars{exppars{ic r}} +
              {1 over 4},
              Remrm{Li}_{2}pars{exppars{ictilde{r}}}
              \[2mm] &
              mbox{where}
              tilde{r} equiv 2pibraces{3r over 2pi} =
              2pibraces{3braces{verts{x} over 2pi}}
              end{align}

              $ds{mrm{Li}_{s}}$ is the
              Polylogarithm Function. Note that
              $ds{3r in left[0,6piright)}$.

              With
              Jonqui$grave{mathrm{e}}$re Inversion Formula, it's found
              begin{align}
              &left.bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}},rightvert
              _{ verts{x}/pars{2pi} not= 0}
              \[5mm] = &
              bbx{{3 over 4},bracks{pi^{2},mrm{B}_{2}pars{braces{verts{x} over 2pi}}} +
              {1 over 4},bracks{pi^{2},
              mrm{B}_{2}pars{braces{3braces{verts{x} over 2pi}}}}}
              end{align}




              $ds{mrm{B}_{n}}$ is a
              Bernoulli Polynomial.
              Note that
              $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$.
              enter image description here







              share|cite|improve this answer



























                up vote
                0
                down vote













                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$




                "As the title says, I need to calculate the sum of the function series..."




                begin{equation}
                bbx{mbox{It's clear that}
                sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}} = {pi^{2} over 6phantom{^{2}}} mbox{when}
                braces{verts{x} over 2pi} = 0}
                end{equation}




                Hereafter, I'll consider the case
                $ds{braces{verts{x} over 2pi} not= 0}$.
                Lets $ds{r equiv 2pibraces{verts{x} over 2pi}}$ with $ds{r in left[0,2piright)}$. Then
                begin{align}
                &bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}} =
                sum_{n=1}^{infty}{cos^{3}pars{nverts{x}} over n^{2}} =
                sum_{n=1}^{infty}{cos^{3}pars{nr} over n^{2}} \[5mm] = &
                sum_{n=1}^{infty}{bracks{3cospars{nr} + cospars{3nr}}/4 over n^{2}}
                \[5mm] = &
                {3 over 4},Resum_{n = 1}^{infty}
                {pars{expo{ic r}}^{n} over n^{2}} +
                {1 over 4},Resum_{n = 1}^{infty}
                {pars{expo{3ic r}}^{n} over n^{2}}
                \[5mm] = &
                {3 over 4},
                Remrm{Li}_{2}pars{exppars{ic r}} +
                {1 over 4},
                Remrm{Li}_{2}pars{exppars{ictilde{r}}}
                \[2mm] &
                mbox{where}
                tilde{r} equiv 2pibraces{3r over 2pi} =
                2pibraces{3braces{verts{x} over 2pi}}
                end{align}

                $ds{mrm{Li}_{s}}$ is the
                Polylogarithm Function. Note that
                $ds{3r in left[0,6piright)}$.

                With
                Jonqui$grave{mathrm{e}}$re Inversion Formula, it's found
                begin{align}
                &left.bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}},rightvert
                _{ verts{x}/pars{2pi} not= 0}
                \[5mm] = &
                bbx{{3 over 4},bracks{pi^{2},mrm{B}_{2}pars{braces{verts{x} over 2pi}}} +
                {1 over 4},bracks{pi^{2},
                mrm{B}_{2}pars{braces{3braces{verts{x} over 2pi}}}}}
                end{align}




                $ds{mrm{B}_{n}}$ is a
                Bernoulli Polynomial.
                Note that
                $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$.
                enter image description here







                share|cite|improve this answer

























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                  newcommand{dd}{mathrm{d}}
                  newcommand{ds}[1]{displaystyle{#1}}
                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                  newcommand{ic}{mathrm{i}}
                  newcommand{mc}[1]{mathcal{#1}}
                  newcommand{mrm}[1]{mathrm{#1}}
                  newcommand{pars}[1]{left(,{#1},right)}
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                  newcommand{verts}[1]{leftvert,{#1},rightvert}$




                  "As the title says, I need to calculate the sum of the function series..."




                  begin{equation}
                  bbx{mbox{It's clear that}
                  sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}} = {pi^{2} over 6phantom{^{2}}} mbox{when}
                  braces{verts{x} over 2pi} = 0}
                  end{equation}




                  Hereafter, I'll consider the case
                  $ds{braces{verts{x} over 2pi} not= 0}$.
                  Lets $ds{r equiv 2pibraces{verts{x} over 2pi}}$ with $ds{r in left[0,2piright)}$. Then
                  begin{align}
                  &bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}} =
                  sum_{n=1}^{infty}{cos^{3}pars{nverts{x}} over n^{2}} =
                  sum_{n=1}^{infty}{cos^{3}pars{nr} over n^{2}} \[5mm] = &
                  sum_{n=1}^{infty}{bracks{3cospars{nr} + cospars{3nr}}/4 over n^{2}}
                  \[5mm] = &
                  {3 over 4},Resum_{n = 1}^{infty}
                  {pars{expo{ic r}}^{n} over n^{2}} +
                  {1 over 4},Resum_{n = 1}^{infty}
                  {pars{expo{3ic r}}^{n} over n^{2}}
                  \[5mm] = &
                  {3 over 4},
                  Remrm{Li}_{2}pars{exppars{ic r}} +
                  {1 over 4},
                  Remrm{Li}_{2}pars{exppars{ictilde{r}}}
                  \[2mm] &
                  mbox{where}
                  tilde{r} equiv 2pibraces{3r over 2pi} =
                  2pibraces{3braces{verts{x} over 2pi}}
                  end{align}

                  $ds{mrm{Li}_{s}}$ is the
                  Polylogarithm Function. Note that
                  $ds{3r in left[0,6piright)}$.

                  With
                  Jonqui$grave{mathrm{e}}$re Inversion Formula, it's found
                  begin{align}
                  &left.bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}},rightvert
                  _{ verts{x}/pars{2pi} not= 0}
                  \[5mm] = &
                  bbx{{3 over 4},bracks{pi^{2},mrm{B}_{2}pars{braces{verts{x} over 2pi}}} +
                  {1 over 4},bracks{pi^{2},
                  mrm{B}_{2}pars{braces{3braces{verts{x} over 2pi}}}}}
                  end{align}




                  $ds{mrm{B}_{n}}$ is a
                  Bernoulli Polynomial.
                  Note that
                  $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$.
                  enter image description here







                  share|cite|improve this answer














                  $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                  newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                  newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                  newcommand{dd}{mathrm{d}}
                  newcommand{ds}[1]{displaystyle{#1}}
                  newcommand{expo}[1]{,mathrm{e}^{#1},}
                  newcommand{ic}{mathrm{i}}
                  newcommand{mc}[1]{mathcal{#1}}
                  newcommand{mrm}[1]{mathrm{#1}}
                  newcommand{pars}[1]{left(,{#1},right)}
                  newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                  newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                  newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                  newcommand{verts}[1]{leftvert,{#1},rightvert}$




                  "As the title says, I need to calculate the sum of the function series..."




                  begin{equation}
                  bbx{mbox{It's clear that}
                  sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}} = {pi^{2} over 6phantom{^{2}}} mbox{when}
                  braces{verts{x} over 2pi} = 0}
                  end{equation}




                  Hereafter, I'll consider the case
                  $ds{braces{verts{x} over 2pi} not= 0}$.
                  Lets $ds{r equiv 2pibraces{verts{x} over 2pi}}$ with $ds{r in left[0,2piright)}$. Then
                  begin{align}
                  &bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}} =
                  sum_{n=1}^{infty}{cos^{3}pars{nverts{x}} over n^{2}} =
                  sum_{n=1}^{infty}{cos^{3}pars{nr} over n^{2}} \[5mm] = &
                  sum_{n=1}^{infty}{bracks{3cospars{nr} + cospars{3nr}}/4 over n^{2}}
                  \[5mm] = &
                  {3 over 4},Resum_{n = 1}^{infty}
                  {pars{expo{ic r}}^{n} over n^{2}} +
                  {1 over 4},Resum_{n = 1}^{infty}
                  {pars{expo{3ic r}}^{n} over n^{2}}
                  \[5mm] = &
                  {3 over 4},
                  Remrm{Li}_{2}pars{exppars{ic r}} +
                  {1 over 4},
                  Remrm{Li}_{2}pars{exppars{ictilde{r}}}
                  \[2mm] &
                  mbox{where}
                  tilde{r} equiv 2pibraces{3r over 2pi} =
                  2pibraces{3braces{verts{x} over 2pi}}
                  end{align}

                  $ds{mrm{Li}_{s}}$ is the
                  Polylogarithm Function. Note that
                  $ds{3r in left[0,6piright)}$.

                  With
                  Jonqui$grave{mathrm{e}}$re Inversion Formula, it's found
                  begin{align}
                  &left.bbox[10px,#ffd]{sum_{n=1}^{infty}{cos^{3}pars{nx} over n^{2}}},rightvert
                  _{ verts{x}/pars{2pi} not= 0}
                  \[5mm] = &
                  bbx{{3 over 4},bracks{pi^{2},mrm{B}_{2}pars{braces{verts{x} over 2pi}}} +
                  {1 over 4},bracks{pi^{2},
                  mrm{B}_{2}pars{braces{3braces{verts{x} over 2pi}}}}}
                  end{align}




                  $ds{mrm{B}_{n}}$ is a
                  Bernoulli Polynomial.
                  Note that
                  $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$.
                  enter image description here








                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 25 at 2:00

























                  answered Nov 24 at 19:57









                  Felix Marin

                  66.5k7107139




                  66.5k7107139






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008350%2fhow-to-calculate-the-sum-of-the-series-sum-n-1-infty-frac-cos3nxn2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten