using the Fourier transform, solve
up vote
-1
down vote
favorite
using the Fourier transform, solve
$$dfrac{partial u}{partial t}=frac{partial^{2}u}{partial x^{2}},hspace{3mm}-infty<x<infty,hspace{2mm}t>0 \u(x,0)=left{begin{array}{lll}u_{0},&|x|<a\0,&|x|geq aend{array}right.hspace{4mm}|u(x,t)|<M$$
real-analysis differential-equations fourier-transform
add a comment |
up vote
-1
down vote
favorite
using the Fourier transform, solve
$$dfrac{partial u}{partial t}=frac{partial^{2}u}{partial x^{2}},hspace{3mm}-infty<x<infty,hspace{2mm}t>0 \u(x,0)=left{begin{array}{lll}u_{0},&|x|<a\0,&|x|geq aend{array}right.hspace{4mm}|u(x,t)|<M$$
real-analysis differential-equations fourier-transform
Could you show some work? Where are you stuck?
– Skip
Aug 13 at 0:23
what happens is that I'm not sure what I did is okay, $$mathscr{F}left{frac{partial^{2}u}{partial x^{2}}right}=mathscr{F}left{frac{partial u}{partial t}right}$$ and I got that, $$mathscr{F}{u(x,0)}=int_{-infty}^{infty}f(x)e^{ialpha x}dx=u_{0}frac{e^{-ialpha}-e^{-ialpha}}{ialpha}$$ and I already got stuck
– Santiago Seeker
Aug 13 at 0:27
add a comment |
up vote
-1
down vote
favorite
up vote
-1
down vote
favorite
using the Fourier transform, solve
$$dfrac{partial u}{partial t}=frac{partial^{2}u}{partial x^{2}},hspace{3mm}-infty<x<infty,hspace{2mm}t>0 \u(x,0)=left{begin{array}{lll}u_{0},&|x|<a\0,&|x|geq aend{array}right.hspace{4mm}|u(x,t)|<M$$
real-analysis differential-equations fourier-transform
using the Fourier transform, solve
$$dfrac{partial u}{partial t}=frac{partial^{2}u}{partial x^{2}},hspace{3mm}-infty<x<infty,hspace{2mm}t>0 \u(x,0)=left{begin{array}{lll}u_{0},&|x|<a\0,&|x|geq aend{array}right.hspace{4mm}|u(x,t)|<M$$
real-analysis differential-equations fourier-transform
real-analysis differential-equations fourier-transform
asked Aug 13 at 0:19
Santiago Seeker
678
678
Could you show some work? Where are you stuck?
– Skip
Aug 13 at 0:23
what happens is that I'm not sure what I did is okay, $$mathscr{F}left{frac{partial^{2}u}{partial x^{2}}right}=mathscr{F}left{frac{partial u}{partial t}right}$$ and I got that, $$mathscr{F}{u(x,0)}=int_{-infty}^{infty}f(x)e^{ialpha x}dx=u_{0}frac{e^{-ialpha}-e^{-ialpha}}{ialpha}$$ and I already got stuck
– Santiago Seeker
Aug 13 at 0:27
add a comment |
Could you show some work? Where are you stuck?
– Skip
Aug 13 at 0:23
what happens is that I'm not sure what I did is okay, $$mathscr{F}left{frac{partial^{2}u}{partial x^{2}}right}=mathscr{F}left{frac{partial u}{partial t}right}$$ and I got that, $$mathscr{F}{u(x,0)}=int_{-infty}^{infty}f(x)e^{ialpha x}dx=u_{0}frac{e^{-ialpha}-e^{-ialpha}}{ialpha}$$ and I already got stuck
– Santiago Seeker
Aug 13 at 0:27
Could you show some work? Where are you stuck?
– Skip
Aug 13 at 0:23
Could you show some work? Where are you stuck?
– Skip
Aug 13 at 0:23
what happens is that I'm not sure what I did is okay, $$mathscr{F}left{frac{partial^{2}u}{partial x^{2}}right}=mathscr{F}left{frac{partial u}{partial t}right}$$ and I got that, $$mathscr{F}{u(x,0)}=int_{-infty}^{infty}f(x)e^{ialpha x}dx=u_{0}frac{e^{-ialpha}-e^{-ialpha}}{ialpha}$$ and I already got stuck
– Santiago Seeker
Aug 13 at 0:27
what happens is that I'm not sure what I did is okay, $$mathscr{F}left{frac{partial^{2}u}{partial x^{2}}right}=mathscr{F}left{frac{partial u}{partial t}right}$$ and I got that, $$mathscr{F}{u(x,0)}=int_{-infty}^{infty}f(x)e^{ialpha x}dx=u_{0}frac{e^{-ialpha}-e^{-ialpha}}{ialpha}$$ and I already got stuck
– Santiago Seeker
Aug 13 at 0:27
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
I know this question is old now but perhaps somebody else may use it later too. I may rewrite the problem as
begin{cases}
displaystyle frac{partial u}{partial t} = frac{partial^2 u}{partial x^2} \
u(x,0) = u_0Big(h(x+a)-h(x-a)Big)
end{cases}
where $h(cdot)$ is the unit step and it is given that $|u|<M$ where $Minmathbb{R}$ is some bound on $u$.
Applying the transform as $mathcal{F}[u(x,t)]=U(lambda,t)$,
$$mathcal{F}big[u_t-u_{xx}big]=frac{dU}{dt}-(-ilambda)^2 U=0$$
and
$$mathcal{F}big[u(x,0)big] = u_0 int_{-infty}^infty big(h(x+a) - h(x-a)big)e^{ilambda x}dx = u_0 int_{-a}^a e^{ilambda x}dx.$$
Evaluating this transform directly as you did gives
$$
begin{align}
mathcal{F}big[u(x,0)big] &= u_0 frac{e^{ilambda a} - e^{-ilambda a}}{ilambda} \
&= u_0frac{coslambda a + isinlambda a - coslambda a + isinlambda a}{ilambda} \
&= frac{2u_0}{lambda}sin lambda a.
end{align}
$$
Alternatively, we can say that because the limits are symmetric and $sinlambda x$ is odd in $x$ and $cos lambda x$ is even in $x$,
$$mathcal{F}big[u(x,0)big] = 2u_0 int_0^a coslambda x dx = frac{2u_0}{lambda}sinlambda a.$$
So the problem becomes
begin{cases}
U'=-lambda^2 U \
displaystyle U(lambda,0) = frac{2u_0}{lambda}sinlambda a
end{cases}
Which has the solution
$$U(lambda, t) = frac{2u_0}{lambda}sinlambda a e^{-lambda^2 t}.$$
Now the solution in the time domain is simply the inverse transform of this expression.
$$u(x,t) = frac{1}{2pi} int_{-infty}^infty frac{2 u_0}{lambda}sinlambda a , e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Multiplying by $a/a$ helps us see that this integral definitely exists.
$$u(x,t) = frac{u_0 a}{pi} int_{-infty}^infty frac{sin a lambda}{a lambda} e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Under the same reasoning, $frac{sin a lambda}{a lambda} e^{-lambda^2 t}$ is even in $lambda$, so the $sin -lambda x$ term contributes nothing to the integral, and still $cos lambda x$ is even.
$$u(x,t) = frac{2u_0 a}{pi} int_0^infty frac{sin a lambda}{a lambda} cos x lambda , e^{-tlambda^2} , dlambda$$
Alternatively, the solution may be expressed as a convolution.
$$u(x,t)=2u_0a , frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda , * , frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} , dlambda $$
Evaluating the convolution involves evaluating each involved inverse Fourier transform independently.
To begin, let
$$
begin{align}
f(x) &= frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda \
&= frac{1}{pi}int_0^infty frac{sin alambda}{alambda}cos xlambda , dlambda \
&= frac{1}{2pi a}int_0^infty frac{sinlambda(a + x) + sinlambda(a - x)}{lambda} , dlambda \
&= frac{1}{2pi a}left((a + x)int_0^infty frac{sinlambda(a + x)}{lambda(a + x)} , dlambda + (a - x)int_0^infty frac{sinlambda(a - x)}{lambda(a - x)} , dlambdaright) \
&= frac{1}{2pi a}left((a + x)int_0^infty operatorname{sinc}lambda(a + x) , dlambda + (a - x)int_0^infty operatorname{sinc}lambda(a - x) , dlambdaright)
end{align}
$$
Knowing that $operatorname{sinc}y = operatorname{sinc}-y$ and
$$int_{0}^infty operatorname{sinc}by , dy = frac{pi}{2|b|},$$
we know the value of these integrals
$$
begin{align}
int_0^infty operatorname{sinc}lambda(a + x) , dlambda &=
begin{cases}
displaystyle -frac{pi}{2(a + x)}, &a + x < 0\
infty, &a + x = 0\
displaystyle frac{pi}{2(a + x)}, &a + x > 0\
end{cases} \
&= frac{pi}{2(a + x)}operatorname{sgn}(a + x) \
\
int_0^infty operatorname{sinc}lambda(a - x) , dlambda &= frac{pi}{2(a - x)}operatorname{sgn}(a - x)
end{align}
$$
So
$$f(x) = frac{operatorname{sgn}(a + x) + operatorname{sgn}(a - x)}{4a}.$$
Now let
$$g(x,t) = frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} dlambda = frac{1}{pi}int_0^infty e^{-t lambda^2} cos xlambda , dlambda.$$
Note that
$$
begin{align}
frac{partial g}{partial x}(x,t) &= -frac{1}{pi}int_0^infty lambda e^{-tlambda^2}sin xlambda , dlambda \
&= frac{1}{2pi t}int_0^infty sin xlambda , de^{-tlambda^2} \
&= frac{1}{2pi t}left(sin xlambda , e^{-tlambda^2}Bigvert_0^infty - int_0^infty xcos xlambda , e^{-tlambda^2} , dlambdaright) \
&= -frac{x}{2pi t}int_0^infty e^{-tlambda^2} cos xlambda , dlambda \
&= -frac{x}{2t}g(x,t).
end{align}
$$
Knowing that $e^{-t lambda^2} = e^{-t (-lambda)^2}$ and
$$int_{-infty}^infty e^{-by^2} , dy = sqrt{frac{pi}{b}},$$
we know $g(x,t)$ if we can solve
$$
begin{cases}
displaystyle frac{partial g}{partial x}(x,t) = -frac{x}{2t}g(x,t) \
displaystyle g(0,t) = frac{1}{2sqrt{pi t}}.
end{cases}
$$
The solution is readily obtainable as
$$g(x,t) = frac{e^{-frac{x^2}{4t}}}{2sqrt{pi t}}.$$
Then we have the solution
$$u(x,t) = 2 u_0 aint_{-infty}^infty f(s)g(x-s,t) , ds = frac{u_0}{4sqrt{pi t}}int_{-infty}^infty big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds.$$
If $|s| > a$, then the integrand is exactly $0$. Otherwise each $operatorname{sgn}$ function evaluates to $1$ except at $|s| = a$ where one is $1$ and the other is $0$.
$$
begin{align}
u(x,t) &= frac{u_0}{4sqrt{pi t}}int_{-a}^a big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2sqrt{pi t}} int_{-a}^a e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2}left(operatorname{erf}left(frac{a + x}{2sqrt{t}}right) + operatorname{erf}left(frac{a - x}{2sqrt{t}}right) right)
end{align}
$$
As $operatorname{erf}y$ is bounded, the solution $u(x,t)$ is bounded.
$hskip 1 in$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
I know this question is old now but perhaps somebody else may use it later too. I may rewrite the problem as
begin{cases}
displaystyle frac{partial u}{partial t} = frac{partial^2 u}{partial x^2} \
u(x,0) = u_0Big(h(x+a)-h(x-a)Big)
end{cases}
where $h(cdot)$ is the unit step and it is given that $|u|<M$ where $Minmathbb{R}$ is some bound on $u$.
Applying the transform as $mathcal{F}[u(x,t)]=U(lambda,t)$,
$$mathcal{F}big[u_t-u_{xx}big]=frac{dU}{dt}-(-ilambda)^2 U=0$$
and
$$mathcal{F}big[u(x,0)big] = u_0 int_{-infty}^infty big(h(x+a) - h(x-a)big)e^{ilambda x}dx = u_0 int_{-a}^a e^{ilambda x}dx.$$
Evaluating this transform directly as you did gives
$$
begin{align}
mathcal{F}big[u(x,0)big] &= u_0 frac{e^{ilambda a} - e^{-ilambda a}}{ilambda} \
&= u_0frac{coslambda a + isinlambda a - coslambda a + isinlambda a}{ilambda} \
&= frac{2u_0}{lambda}sin lambda a.
end{align}
$$
Alternatively, we can say that because the limits are symmetric and $sinlambda x$ is odd in $x$ and $cos lambda x$ is even in $x$,
$$mathcal{F}big[u(x,0)big] = 2u_0 int_0^a coslambda x dx = frac{2u_0}{lambda}sinlambda a.$$
So the problem becomes
begin{cases}
U'=-lambda^2 U \
displaystyle U(lambda,0) = frac{2u_0}{lambda}sinlambda a
end{cases}
Which has the solution
$$U(lambda, t) = frac{2u_0}{lambda}sinlambda a e^{-lambda^2 t}.$$
Now the solution in the time domain is simply the inverse transform of this expression.
$$u(x,t) = frac{1}{2pi} int_{-infty}^infty frac{2 u_0}{lambda}sinlambda a , e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Multiplying by $a/a$ helps us see that this integral definitely exists.
$$u(x,t) = frac{u_0 a}{pi} int_{-infty}^infty frac{sin a lambda}{a lambda} e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Under the same reasoning, $frac{sin a lambda}{a lambda} e^{-lambda^2 t}$ is even in $lambda$, so the $sin -lambda x$ term contributes nothing to the integral, and still $cos lambda x$ is even.
$$u(x,t) = frac{2u_0 a}{pi} int_0^infty frac{sin a lambda}{a lambda} cos x lambda , e^{-tlambda^2} , dlambda$$
Alternatively, the solution may be expressed as a convolution.
$$u(x,t)=2u_0a , frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda , * , frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} , dlambda $$
Evaluating the convolution involves evaluating each involved inverse Fourier transform independently.
To begin, let
$$
begin{align}
f(x) &= frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda \
&= frac{1}{pi}int_0^infty frac{sin alambda}{alambda}cos xlambda , dlambda \
&= frac{1}{2pi a}int_0^infty frac{sinlambda(a + x) + sinlambda(a - x)}{lambda} , dlambda \
&= frac{1}{2pi a}left((a + x)int_0^infty frac{sinlambda(a + x)}{lambda(a + x)} , dlambda + (a - x)int_0^infty frac{sinlambda(a - x)}{lambda(a - x)} , dlambdaright) \
&= frac{1}{2pi a}left((a + x)int_0^infty operatorname{sinc}lambda(a + x) , dlambda + (a - x)int_0^infty operatorname{sinc}lambda(a - x) , dlambdaright)
end{align}
$$
Knowing that $operatorname{sinc}y = operatorname{sinc}-y$ and
$$int_{0}^infty operatorname{sinc}by , dy = frac{pi}{2|b|},$$
we know the value of these integrals
$$
begin{align}
int_0^infty operatorname{sinc}lambda(a + x) , dlambda &=
begin{cases}
displaystyle -frac{pi}{2(a + x)}, &a + x < 0\
infty, &a + x = 0\
displaystyle frac{pi}{2(a + x)}, &a + x > 0\
end{cases} \
&= frac{pi}{2(a + x)}operatorname{sgn}(a + x) \
\
int_0^infty operatorname{sinc}lambda(a - x) , dlambda &= frac{pi}{2(a - x)}operatorname{sgn}(a - x)
end{align}
$$
So
$$f(x) = frac{operatorname{sgn}(a + x) + operatorname{sgn}(a - x)}{4a}.$$
Now let
$$g(x,t) = frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} dlambda = frac{1}{pi}int_0^infty e^{-t lambda^2} cos xlambda , dlambda.$$
Note that
$$
begin{align}
frac{partial g}{partial x}(x,t) &= -frac{1}{pi}int_0^infty lambda e^{-tlambda^2}sin xlambda , dlambda \
&= frac{1}{2pi t}int_0^infty sin xlambda , de^{-tlambda^2} \
&= frac{1}{2pi t}left(sin xlambda , e^{-tlambda^2}Bigvert_0^infty - int_0^infty xcos xlambda , e^{-tlambda^2} , dlambdaright) \
&= -frac{x}{2pi t}int_0^infty e^{-tlambda^2} cos xlambda , dlambda \
&= -frac{x}{2t}g(x,t).
end{align}
$$
Knowing that $e^{-t lambda^2} = e^{-t (-lambda)^2}$ and
$$int_{-infty}^infty e^{-by^2} , dy = sqrt{frac{pi}{b}},$$
we know $g(x,t)$ if we can solve
$$
begin{cases}
displaystyle frac{partial g}{partial x}(x,t) = -frac{x}{2t}g(x,t) \
displaystyle g(0,t) = frac{1}{2sqrt{pi t}}.
end{cases}
$$
The solution is readily obtainable as
$$g(x,t) = frac{e^{-frac{x^2}{4t}}}{2sqrt{pi t}}.$$
Then we have the solution
$$u(x,t) = 2 u_0 aint_{-infty}^infty f(s)g(x-s,t) , ds = frac{u_0}{4sqrt{pi t}}int_{-infty}^infty big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds.$$
If $|s| > a$, then the integrand is exactly $0$. Otherwise each $operatorname{sgn}$ function evaluates to $1$ except at $|s| = a$ where one is $1$ and the other is $0$.
$$
begin{align}
u(x,t) &= frac{u_0}{4sqrt{pi t}}int_{-a}^a big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2sqrt{pi t}} int_{-a}^a e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2}left(operatorname{erf}left(frac{a + x}{2sqrt{t}}right) + operatorname{erf}left(frac{a - x}{2sqrt{t}}right) right)
end{align}
$$
As $operatorname{erf}y$ is bounded, the solution $u(x,t)$ is bounded.
$hskip 1 in$
add a comment |
up vote
1
down vote
I know this question is old now but perhaps somebody else may use it later too. I may rewrite the problem as
begin{cases}
displaystyle frac{partial u}{partial t} = frac{partial^2 u}{partial x^2} \
u(x,0) = u_0Big(h(x+a)-h(x-a)Big)
end{cases}
where $h(cdot)$ is the unit step and it is given that $|u|<M$ where $Minmathbb{R}$ is some bound on $u$.
Applying the transform as $mathcal{F}[u(x,t)]=U(lambda,t)$,
$$mathcal{F}big[u_t-u_{xx}big]=frac{dU}{dt}-(-ilambda)^2 U=0$$
and
$$mathcal{F}big[u(x,0)big] = u_0 int_{-infty}^infty big(h(x+a) - h(x-a)big)e^{ilambda x}dx = u_0 int_{-a}^a e^{ilambda x}dx.$$
Evaluating this transform directly as you did gives
$$
begin{align}
mathcal{F}big[u(x,0)big] &= u_0 frac{e^{ilambda a} - e^{-ilambda a}}{ilambda} \
&= u_0frac{coslambda a + isinlambda a - coslambda a + isinlambda a}{ilambda} \
&= frac{2u_0}{lambda}sin lambda a.
end{align}
$$
Alternatively, we can say that because the limits are symmetric and $sinlambda x$ is odd in $x$ and $cos lambda x$ is even in $x$,
$$mathcal{F}big[u(x,0)big] = 2u_0 int_0^a coslambda x dx = frac{2u_0}{lambda}sinlambda a.$$
So the problem becomes
begin{cases}
U'=-lambda^2 U \
displaystyle U(lambda,0) = frac{2u_0}{lambda}sinlambda a
end{cases}
Which has the solution
$$U(lambda, t) = frac{2u_0}{lambda}sinlambda a e^{-lambda^2 t}.$$
Now the solution in the time domain is simply the inverse transform of this expression.
$$u(x,t) = frac{1}{2pi} int_{-infty}^infty frac{2 u_0}{lambda}sinlambda a , e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Multiplying by $a/a$ helps us see that this integral definitely exists.
$$u(x,t) = frac{u_0 a}{pi} int_{-infty}^infty frac{sin a lambda}{a lambda} e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Under the same reasoning, $frac{sin a lambda}{a lambda} e^{-lambda^2 t}$ is even in $lambda$, so the $sin -lambda x$ term contributes nothing to the integral, and still $cos lambda x$ is even.
$$u(x,t) = frac{2u_0 a}{pi} int_0^infty frac{sin a lambda}{a lambda} cos x lambda , e^{-tlambda^2} , dlambda$$
Alternatively, the solution may be expressed as a convolution.
$$u(x,t)=2u_0a , frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda , * , frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} , dlambda $$
Evaluating the convolution involves evaluating each involved inverse Fourier transform independently.
To begin, let
$$
begin{align}
f(x) &= frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda \
&= frac{1}{pi}int_0^infty frac{sin alambda}{alambda}cos xlambda , dlambda \
&= frac{1}{2pi a}int_0^infty frac{sinlambda(a + x) + sinlambda(a - x)}{lambda} , dlambda \
&= frac{1}{2pi a}left((a + x)int_0^infty frac{sinlambda(a + x)}{lambda(a + x)} , dlambda + (a - x)int_0^infty frac{sinlambda(a - x)}{lambda(a - x)} , dlambdaright) \
&= frac{1}{2pi a}left((a + x)int_0^infty operatorname{sinc}lambda(a + x) , dlambda + (a - x)int_0^infty operatorname{sinc}lambda(a - x) , dlambdaright)
end{align}
$$
Knowing that $operatorname{sinc}y = operatorname{sinc}-y$ and
$$int_{0}^infty operatorname{sinc}by , dy = frac{pi}{2|b|},$$
we know the value of these integrals
$$
begin{align}
int_0^infty operatorname{sinc}lambda(a + x) , dlambda &=
begin{cases}
displaystyle -frac{pi}{2(a + x)}, &a + x < 0\
infty, &a + x = 0\
displaystyle frac{pi}{2(a + x)}, &a + x > 0\
end{cases} \
&= frac{pi}{2(a + x)}operatorname{sgn}(a + x) \
\
int_0^infty operatorname{sinc}lambda(a - x) , dlambda &= frac{pi}{2(a - x)}operatorname{sgn}(a - x)
end{align}
$$
So
$$f(x) = frac{operatorname{sgn}(a + x) + operatorname{sgn}(a - x)}{4a}.$$
Now let
$$g(x,t) = frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} dlambda = frac{1}{pi}int_0^infty e^{-t lambda^2} cos xlambda , dlambda.$$
Note that
$$
begin{align}
frac{partial g}{partial x}(x,t) &= -frac{1}{pi}int_0^infty lambda e^{-tlambda^2}sin xlambda , dlambda \
&= frac{1}{2pi t}int_0^infty sin xlambda , de^{-tlambda^2} \
&= frac{1}{2pi t}left(sin xlambda , e^{-tlambda^2}Bigvert_0^infty - int_0^infty xcos xlambda , e^{-tlambda^2} , dlambdaright) \
&= -frac{x}{2pi t}int_0^infty e^{-tlambda^2} cos xlambda , dlambda \
&= -frac{x}{2t}g(x,t).
end{align}
$$
Knowing that $e^{-t lambda^2} = e^{-t (-lambda)^2}$ and
$$int_{-infty}^infty e^{-by^2} , dy = sqrt{frac{pi}{b}},$$
we know $g(x,t)$ if we can solve
$$
begin{cases}
displaystyle frac{partial g}{partial x}(x,t) = -frac{x}{2t}g(x,t) \
displaystyle g(0,t) = frac{1}{2sqrt{pi t}}.
end{cases}
$$
The solution is readily obtainable as
$$g(x,t) = frac{e^{-frac{x^2}{4t}}}{2sqrt{pi t}}.$$
Then we have the solution
$$u(x,t) = 2 u_0 aint_{-infty}^infty f(s)g(x-s,t) , ds = frac{u_0}{4sqrt{pi t}}int_{-infty}^infty big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds.$$
If $|s| > a$, then the integrand is exactly $0$. Otherwise each $operatorname{sgn}$ function evaluates to $1$ except at $|s| = a$ where one is $1$ and the other is $0$.
$$
begin{align}
u(x,t) &= frac{u_0}{4sqrt{pi t}}int_{-a}^a big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2sqrt{pi t}} int_{-a}^a e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2}left(operatorname{erf}left(frac{a + x}{2sqrt{t}}right) + operatorname{erf}left(frac{a - x}{2sqrt{t}}right) right)
end{align}
$$
As $operatorname{erf}y$ is bounded, the solution $u(x,t)$ is bounded.
$hskip 1 in$
add a comment |
up vote
1
down vote
up vote
1
down vote
I know this question is old now but perhaps somebody else may use it later too. I may rewrite the problem as
begin{cases}
displaystyle frac{partial u}{partial t} = frac{partial^2 u}{partial x^2} \
u(x,0) = u_0Big(h(x+a)-h(x-a)Big)
end{cases}
where $h(cdot)$ is the unit step and it is given that $|u|<M$ where $Minmathbb{R}$ is some bound on $u$.
Applying the transform as $mathcal{F}[u(x,t)]=U(lambda,t)$,
$$mathcal{F}big[u_t-u_{xx}big]=frac{dU}{dt}-(-ilambda)^2 U=0$$
and
$$mathcal{F}big[u(x,0)big] = u_0 int_{-infty}^infty big(h(x+a) - h(x-a)big)e^{ilambda x}dx = u_0 int_{-a}^a e^{ilambda x}dx.$$
Evaluating this transform directly as you did gives
$$
begin{align}
mathcal{F}big[u(x,0)big] &= u_0 frac{e^{ilambda a} - e^{-ilambda a}}{ilambda} \
&= u_0frac{coslambda a + isinlambda a - coslambda a + isinlambda a}{ilambda} \
&= frac{2u_0}{lambda}sin lambda a.
end{align}
$$
Alternatively, we can say that because the limits are symmetric and $sinlambda x$ is odd in $x$ and $cos lambda x$ is even in $x$,
$$mathcal{F}big[u(x,0)big] = 2u_0 int_0^a coslambda x dx = frac{2u_0}{lambda}sinlambda a.$$
So the problem becomes
begin{cases}
U'=-lambda^2 U \
displaystyle U(lambda,0) = frac{2u_0}{lambda}sinlambda a
end{cases}
Which has the solution
$$U(lambda, t) = frac{2u_0}{lambda}sinlambda a e^{-lambda^2 t}.$$
Now the solution in the time domain is simply the inverse transform of this expression.
$$u(x,t) = frac{1}{2pi} int_{-infty}^infty frac{2 u_0}{lambda}sinlambda a , e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Multiplying by $a/a$ helps us see that this integral definitely exists.
$$u(x,t) = frac{u_0 a}{pi} int_{-infty}^infty frac{sin a lambda}{a lambda} e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Under the same reasoning, $frac{sin a lambda}{a lambda} e^{-lambda^2 t}$ is even in $lambda$, so the $sin -lambda x$ term contributes nothing to the integral, and still $cos lambda x$ is even.
$$u(x,t) = frac{2u_0 a}{pi} int_0^infty frac{sin a lambda}{a lambda} cos x lambda , e^{-tlambda^2} , dlambda$$
Alternatively, the solution may be expressed as a convolution.
$$u(x,t)=2u_0a , frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda , * , frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} , dlambda $$
Evaluating the convolution involves evaluating each involved inverse Fourier transform independently.
To begin, let
$$
begin{align}
f(x) &= frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda \
&= frac{1}{pi}int_0^infty frac{sin alambda}{alambda}cos xlambda , dlambda \
&= frac{1}{2pi a}int_0^infty frac{sinlambda(a + x) + sinlambda(a - x)}{lambda} , dlambda \
&= frac{1}{2pi a}left((a + x)int_0^infty frac{sinlambda(a + x)}{lambda(a + x)} , dlambda + (a - x)int_0^infty frac{sinlambda(a - x)}{lambda(a - x)} , dlambdaright) \
&= frac{1}{2pi a}left((a + x)int_0^infty operatorname{sinc}lambda(a + x) , dlambda + (a - x)int_0^infty operatorname{sinc}lambda(a - x) , dlambdaright)
end{align}
$$
Knowing that $operatorname{sinc}y = operatorname{sinc}-y$ and
$$int_{0}^infty operatorname{sinc}by , dy = frac{pi}{2|b|},$$
we know the value of these integrals
$$
begin{align}
int_0^infty operatorname{sinc}lambda(a + x) , dlambda &=
begin{cases}
displaystyle -frac{pi}{2(a + x)}, &a + x < 0\
infty, &a + x = 0\
displaystyle frac{pi}{2(a + x)}, &a + x > 0\
end{cases} \
&= frac{pi}{2(a + x)}operatorname{sgn}(a + x) \
\
int_0^infty operatorname{sinc}lambda(a - x) , dlambda &= frac{pi}{2(a - x)}operatorname{sgn}(a - x)
end{align}
$$
So
$$f(x) = frac{operatorname{sgn}(a + x) + operatorname{sgn}(a - x)}{4a}.$$
Now let
$$g(x,t) = frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} dlambda = frac{1}{pi}int_0^infty e^{-t lambda^2} cos xlambda , dlambda.$$
Note that
$$
begin{align}
frac{partial g}{partial x}(x,t) &= -frac{1}{pi}int_0^infty lambda e^{-tlambda^2}sin xlambda , dlambda \
&= frac{1}{2pi t}int_0^infty sin xlambda , de^{-tlambda^2} \
&= frac{1}{2pi t}left(sin xlambda , e^{-tlambda^2}Bigvert_0^infty - int_0^infty xcos xlambda , e^{-tlambda^2} , dlambdaright) \
&= -frac{x}{2pi t}int_0^infty e^{-tlambda^2} cos xlambda , dlambda \
&= -frac{x}{2t}g(x,t).
end{align}
$$
Knowing that $e^{-t lambda^2} = e^{-t (-lambda)^2}$ and
$$int_{-infty}^infty e^{-by^2} , dy = sqrt{frac{pi}{b}},$$
we know $g(x,t)$ if we can solve
$$
begin{cases}
displaystyle frac{partial g}{partial x}(x,t) = -frac{x}{2t}g(x,t) \
displaystyle g(0,t) = frac{1}{2sqrt{pi t}}.
end{cases}
$$
The solution is readily obtainable as
$$g(x,t) = frac{e^{-frac{x^2}{4t}}}{2sqrt{pi t}}.$$
Then we have the solution
$$u(x,t) = 2 u_0 aint_{-infty}^infty f(s)g(x-s,t) , ds = frac{u_0}{4sqrt{pi t}}int_{-infty}^infty big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds.$$
If $|s| > a$, then the integrand is exactly $0$. Otherwise each $operatorname{sgn}$ function evaluates to $1$ except at $|s| = a$ where one is $1$ and the other is $0$.
$$
begin{align}
u(x,t) &= frac{u_0}{4sqrt{pi t}}int_{-a}^a big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2sqrt{pi t}} int_{-a}^a e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2}left(operatorname{erf}left(frac{a + x}{2sqrt{t}}right) + operatorname{erf}left(frac{a - x}{2sqrt{t}}right) right)
end{align}
$$
As $operatorname{erf}y$ is bounded, the solution $u(x,t)$ is bounded.
$hskip 1 in$
I know this question is old now but perhaps somebody else may use it later too. I may rewrite the problem as
begin{cases}
displaystyle frac{partial u}{partial t} = frac{partial^2 u}{partial x^2} \
u(x,0) = u_0Big(h(x+a)-h(x-a)Big)
end{cases}
where $h(cdot)$ is the unit step and it is given that $|u|<M$ where $Minmathbb{R}$ is some bound on $u$.
Applying the transform as $mathcal{F}[u(x,t)]=U(lambda,t)$,
$$mathcal{F}big[u_t-u_{xx}big]=frac{dU}{dt}-(-ilambda)^2 U=0$$
and
$$mathcal{F}big[u(x,0)big] = u_0 int_{-infty}^infty big(h(x+a) - h(x-a)big)e^{ilambda x}dx = u_0 int_{-a}^a e^{ilambda x}dx.$$
Evaluating this transform directly as you did gives
$$
begin{align}
mathcal{F}big[u(x,0)big] &= u_0 frac{e^{ilambda a} - e^{-ilambda a}}{ilambda} \
&= u_0frac{coslambda a + isinlambda a - coslambda a + isinlambda a}{ilambda} \
&= frac{2u_0}{lambda}sin lambda a.
end{align}
$$
Alternatively, we can say that because the limits are symmetric and $sinlambda x$ is odd in $x$ and $cos lambda x$ is even in $x$,
$$mathcal{F}big[u(x,0)big] = 2u_0 int_0^a coslambda x dx = frac{2u_0}{lambda}sinlambda a.$$
So the problem becomes
begin{cases}
U'=-lambda^2 U \
displaystyle U(lambda,0) = frac{2u_0}{lambda}sinlambda a
end{cases}
Which has the solution
$$U(lambda, t) = frac{2u_0}{lambda}sinlambda a e^{-lambda^2 t}.$$
Now the solution in the time domain is simply the inverse transform of this expression.
$$u(x,t) = frac{1}{2pi} int_{-infty}^infty frac{2 u_0}{lambda}sinlambda a , e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Multiplying by $a/a$ helps us see that this integral definitely exists.
$$u(x,t) = frac{u_0 a}{pi} int_{-infty}^infty frac{sin a lambda}{a lambda} e^{-lambda^2 t} e^{-i lambda x} dlambda$$
Under the same reasoning, $frac{sin a lambda}{a lambda} e^{-lambda^2 t}$ is even in $lambda$, so the $sin -lambda x$ term contributes nothing to the integral, and still $cos lambda x$ is even.
$$u(x,t) = frac{2u_0 a}{pi} int_0^infty frac{sin a lambda}{a lambda} cos x lambda , e^{-tlambda^2} , dlambda$$
Alternatively, the solution may be expressed as a convolution.
$$u(x,t)=2u_0a , frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda , * , frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} , dlambda $$
Evaluating the convolution involves evaluating each involved inverse Fourier transform independently.
To begin, let
$$
begin{align}
f(x) &= frac{1}{2pi}int_{-infty}^inftyfrac{sin alambda}{alambda}e^{-i x lambda} , dlambda \
&= frac{1}{pi}int_0^infty frac{sin alambda}{alambda}cos xlambda , dlambda \
&= frac{1}{2pi a}int_0^infty frac{sinlambda(a + x) + sinlambda(a - x)}{lambda} , dlambda \
&= frac{1}{2pi a}left((a + x)int_0^infty frac{sinlambda(a + x)}{lambda(a + x)} , dlambda + (a - x)int_0^infty frac{sinlambda(a - x)}{lambda(a - x)} , dlambdaright) \
&= frac{1}{2pi a}left((a + x)int_0^infty operatorname{sinc}lambda(a + x) , dlambda + (a - x)int_0^infty operatorname{sinc}lambda(a - x) , dlambdaright)
end{align}
$$
Knowing that $operatorname{sinc}y = operatorname{sinc}-y$ and
$$int_{0}^infty operatorname{sinc}by , dy = frac{pi}{2|b|},$$
we know the value of these integrals
$$
begin{align}
int_0^infty operatorname{sinc}lambda(a + x) , dlambda &=
begin{cases}
displaystyle -frac{pi}{2(a + x)}, &a + x < 0\
infty, &a + x = 0\
displaystyle frac{pi}{2(a + x)}, &a + x > 0\
end{cases} \
&= frac{pi}{2(a + x)}operatorname{sgn}(a + x) \
\
int_0^infty operatorname{sinc}lambda(a - x) , dlambda &= frac{pi}{2(a - x)}operatorname{sgn}(a - x)
end{align}
$$
So
$$f(x) = frac{operatorname{sgn}(a + x) + operatorname{sgn}(a - x)}{4a}.$$
Now let
$$g(x,t) = frac{1}{2pi}int_{-infty}^infty e^{-t lambda^2} e^{-i x lambda} dlambda = frac{1}{pi}int_0^infty e^{-t lambda^2} cos xlambda , dlambda.$$
Note that
$$
begin{align}
frac{partial g}{partial x}(x,t) &= -frac{1}{pi}int_0^infty lambda e^{-tlambda^2}sin xlambda , dlambda \
&= frac{1}{2pi t}int_0^infty sin xlambda , de^{-tlambda^2} \
&= frac{1}{2pi t}left(sin xlambda , e^{-tlambda^2}Bigvert_0^infty - int_0^infty xcos xlambda , e^{-tlambda^2} , dlambdaright) \
&= -frac{x}{2pi t}int_0^infty e^{-tlambda^2} cos xlambda , dlambda \
&= -frac{x}{2t}g(x,t).
end{align}
$$
Knowing that $e^{-t lambda^2} = e^{-t (-lambda)^2}$ and
$$int_{-infty}^infty e^{-by^2} , dy = sqrt{frac{pi}{b}},$$
we know $g(x,t)$ if we can solve
$$
begin{cases}
displaystyle frac{partial g}{partial x}(x,t) = -frac{x}{2t}g(x,t) \
displaystyle g(0,t) = frac{1}{2sqrt{pi t}}.
end{cases}
$$
The solution is readily obtainable as
$$g(x,t) = frac{e^{-frac{x^2}{4t}}}{2sqrt{pi t}}.$$
Then we have the solution
$$u(x,t) = 2 u_0 aint_{-infty}^infty f(s)g(x-s,t) , ds = frac{u_0}{4sqrt{pi t}}int_{-infty}^infty big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds.$$
If $|s| > a$, then the integrand is exactly $0$. Otherwise each $operatorname{sgn}$ function evaluates to $1$ except at $|s| = a$ where one is $1$ and the other is $0$.
$$
begin{align}
u(x,t) &= frac{u_0}{4sqrt{pi t}}int_{-a}^a big(operatorname{sgn}(a + s) + operatorname{sgn}(a - s)big)e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2sqrt{pi t}} int_{-a}^a e^{-frac{(x-s)^2}{4t}} , ds \
&= frac{u_0}{2}left(operatorname{erf}left(frac{a + x}{2sqrt{t}}right) + operatorname{erf}left(frac{a - x}{2sqrt{t}}right) right)
end{align}
$$
As $operatorname{erf}y$ is bounded, the solution $u(x,t)$ is bounded.
$hskip 1 in$
answered Nov 21 at 21:50
Skip
1,127214
1,127214
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880854%2fusing-the-fourier-transform-solve%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Could you show some work? Where are you stuck?
– Skip
Aug 13 at 0:23
what happens is that I'm not sure what I did is okay, $$mathscr{F}left{frac{partial^{2}u}{partial x^{2}}right}=mathscr{F}left{frac{partial u}{partial t}right}$$ and I got that, $$mathscr{F}{u(x,0)}=int_{-infty}^{infty}f(x)e^{ialpha x}dx=u_{0}frac{e^{-ialpha}-e^{-ialpha}}{ialpha}$$ and I already got stuck
– Santiago Seeker
Aug 13 at 0:27