Seeking Methods to solve $ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$












12












$begingroup$


I was wondering what methods people knew of to solve the following definite integral? I have found a method using Feynman's Trick (see below) but am curious as to whether there are other Feynman's Tricks and/or Methods that can be used to solve it:



$$ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$$



My method:



Let



$$ I(t) = int_{0}^{frac{pi}{2}} frac{arctanleft(tsin(x)right)}{sin(x)}:dx$$



Thus,



begin{align}
I'(t) &= int_{0}^{frac{pi}{2}} frac{sin(x)}{left(t^2sin^2(x) + 1right)sin(x)}:dx = int_{0}^{frac{pi}{2}} frac{1}{t^2sin^2(x) + 1}:dx \
&= left[frac{1}{sqrt{t^2 + 1}} arctanleft(sqrt{t^2 + 1}tan(x) right)right]_{0}^{frac{pi}{2}} = sqrt{t^2 + 1}frac{pi}{2}
end{align}



Thus



$$I(t) = frac{pi}{2}sinh^{-1}(t) + C$$



Now



$$I(0) = C = int_{0}^{frac{pi}{2}} frac{arctanleft(0cdotsin(x)right)}{sin(x)}:dx = 0$$



Thus



$$I(t) = frac{pi}{2}sinh^{-1}(t)$$



And finally,



$$I = I(1) = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx = frac{pi}{2}sinh^{-1}(1) = frac{pi}{2}lnleft|1 + sqrt{2}right|$$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
    $endgroup$
    – Frpzzd
    Dec 4 '18 at 0:09










  • $begingroup$
    @Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
    $endgroup$
    – DavidG
    Dec 4 '18 at 0:17










  • $begingroup$
    I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
    $endgroup$
    – clathratus
    Jan 12 at 23:22
















12












$begingroup$


I was wondering what methods people knew of to solve the following definite integral? I have found a method using Feynman's Trick (see below) but am curious as to whether there are other Feynman's Tricks and/or Methods that can be used to solve it:



$$ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$$



My method:



Let



$$ I(t) = int_{0}^{frac{pi}{2}} frac{arctanleft(tsin(x)right)}{sin(x)}:dx$$



Thus,



begin{align}
I'(t) &= int_{0}^{frac{pi}{2}} frac{sin(x)}{left(t^2sin^2(x) + 1right)sin(x)}:dx = int_{0}^{frac{pi}{2}} frac{1}{t^2sin^2(x) + 1}:dx \
&= left[frac{1}{sqrt{t^2 + 1}} arctanleft(sqrt{t^2 + 1}tan(x) right)right]_{0}^{frac{pi}{2}} = sqrt{t^2 + 1}frac{pi}{2}
end{align}



Thus



$$I(t) = frac{pi}{2}sinh^{-1}(t) + C$$



Now



$$I(0) = C = int_{0}^{frac{pi}{2}} frac{arctanleft(0cdotsin(x)right)}{sin(x)}:dx = 0$$



Thus



$$I(t) = frac{pi}{2}sinh^{-1}(t)$$



And finally,



$$I = I(1) = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx = frac{pi}{2}sinh^{-1}(1) = frac{pi}{2}lnleft|1 + sqrt{2}right|$$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
    $endgroup$
    – Frpzzd
    Dec 4 '18 at 0:09










  • $begingroup$
    @Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
    $endgroup$
    – DavidG
    Dec 4 '18 at 0:17










  • $begingroup$
    I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
    $endgroup$
    – clathratus
    Jan 12 at 23:22














12












12








12


6



$begingroup$


I was wondering what methods people knew of to solve the following definite integral? I have found a method using Feynman's Trick (see below) but am curious as to whether there are other Feynman's Tricks and/or Methods that can be used to solve it:



$$ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$$



My method:



Let



$$ I(t) = int_{0}^{frac{pi}{2}} frac{arctanleft(tsin(x)right)}{sin(x)}:dx$$



Thus,



begin{align}
I'(t) &= int_{0}^{frac{pi}{2}} frac{sin(x)}{left(t^2sin^2(x) + 1right)sin(x)}:dx = int_{0}^{frac{pi}{2}} frac{1}{t^2sin^2(x) + 1}:dx \
&= left[frac{1}{sqrt{t^2 + 1}} arctanleft(sqrt{t^2 + 1}tan(x) right)right]_{0}^{frac{pi}{2}} = sqrt{t^2 + 1}frac{pi}{2}
end{align}



Thus



$$I(t) = frac{pi}{2}sinh^{-1}(t) + C$$



Now



$$I(0) = C = int_{0}^{frac{pi}{2}} frac{arctanleft(0cdotsin(x)right)}{sin(x)}:dx = 0$$



Thus



$$I(t) = frac{pi}{2}sinh^{-1}(t)$$



And finally,



$$I = I(1) = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx = frac{pi}{2}sinh^{-1}(1) = frac{pi}{2}lnleft|1 + sqrt{2}right|$$










share|cite|improve this question









$endgroup$




I was wondering what methods people knew of to solve the following definite integral? I have found a method using Feynman's Trick (see below) but am curious as to whether there are other Feynman's Tricks and/or Methods that can be used to solve it:



$$ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$$



My method:



Let



$$ I(t) = int_{0}^{frac{pi}{2}} frac{arctanleft(tsin(x)right)}{sin(x)}:dx$$



Thus,



begin{align}
I'(t) &= int_{0}^{frac{pi}{2}} frac{sin(x)}{left(t^2sin^2(x) + 1right)sin(x)}:dx = int_{0}^{frac{pi}{2}} frac{1}{t^2sin^2(x) + 1}:dx \
&= left[frac{1}{sqrt{t^2 + 1}} arctanleft(sqrt{t^2 + 1}tan(x) right)right]_{0}^{frac{pi}{2}} = sqrt{t^2 + 1}frac{pi}{2}
end{align}



Thus



$$I(t) = frac{pi}{2}sinh^{-1}(t) + C$$



Now



$$I(0) = C = int_{0}^{frac{pi}{2}} frac{arctanleft(0cdotsin(x)right)}{sin(x)}:dx = 0$$



Thus



$$I(t) = frac{pi}{2}sinh^{-1}(t)$$



And finally,



$$I = I(1) = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx = frac{pi}{2}sinh^{-1}(1) = frac{pi}{2}lnleft|1 + sqrt{2}right|$$







integration definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 3 '18 at 23:48









DavidGDavidG

2,1021720




2,1021720








  • 2




    $begingroup$
    Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
    $endgroup$
    – Frpzzd
    Dec 4 '18 at 0:09










  • $begingroup$
    @Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
    $endgroup$
    – DavidG
    Dec 4 '18 at 0:17










  • $begingroup$
    I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
    $endgroup$
    – clathratus
    Jan 12 at 23:22














  • 2




    $begingroup$
    Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
    $endgroup$
    – Frpzzd
    Dec 4 '18 at 0:09










  • $begingroup$
    @Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
    $endgroup$
    – DavidG
    Dec 4 '18 at 0:17










  • $begingroup$
    I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
    $endgroup$
    – clathratus
    Jan 12 at 23:22








2




2




$begingroup$
Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
$endgroup$
– Frpzzd
Dec 4 '18 at 0:09




$begingroup$
Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
$endgroup$
– Frpzzd
Dec 4 '18 at 0:09












$begingroup$
@Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
$endgroup$
– DavidG
Dec 4 '18 at 0:17




$begingroup$
@Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
$endgroup$
– DavidG
Dec 4 '18 at 0:17












$begingroup$
I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
$endgroup$
– clathratus
Jan 12 at 23:22




$begingroup$
I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
$endgroup$
– clathratus
Jan 12 at 23:22










5 Answers
5






active

oldest

votes


















11












$begingroup$

$$begin{align}
int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
&=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
&=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
&=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
&=frac{pi}{2}ln(1+sqrt{2}) \
end{align}$$






share|cite|improve this answer











$endgroup$





















    10












    $begingroup$

    Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
    $$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
    $$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$






    share|cite|improve this answer











    $endgroup$





















      7












      $begingroup$

      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$

      begin{align}
      I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
      int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
      \[5mm] & =
      int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
      int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
      \[5mm] & =
      int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
      pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
      \[5mm] & =
      int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
      {root{1/t^{2} + 1}sec^{2}pars{x} over
      pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
      \[5mm] & =
      int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
      {dd x over x^{2} + 1},dd x,dd t =
      {pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
      \[5mm] & =
      {pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
      \[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
      {pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
      left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
      \[5mm] & =
      -,{pi over 4},lnpars{root{2} - 1 over
      root{2} + 1} =
      {pi over 4},lnpars{bracks{root{2} + 1}^{2}}
      \[5mm] & =
      bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
      end{align}






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
        $endgroup$
        – DavidG
        Dec 5 '18 at 11:09










      • $begingroup$
        @DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
        $endgroup$
        – Felix Marin
        Dec 5 '18 at 16:13



















      6












      $begingroup$

      $$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
      is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
      $$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
      we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.





      By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula



      $$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
      In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.






      share|cite|improve this answer











      $endgroup$





















        2












        $begingroup$

        Slightly different from @Frpzzd's answer
        $$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
        Recall that
        $$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
        And since $forall xinBbb R , |sin x|leq1$, we have that
        $$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
        So we have that
        $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
        I leave it as a challenge to you to prove that
        $$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
        So
        $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
        $$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
        Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
        $$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
        $$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
        Thus
        $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
        then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
        $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
        $$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
        And (drum roll please)...
        $$I=frac{pi}2operatorname{arcsinh}1$$
        $$I=frac{pi}2log(1+sqrt2)$$





        Extra: proving the hypergeometric identity



        We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.



        It is easily shown that
        $$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
        Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
        So
        $$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
        $$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
        Then using the identity
        $$p(alpha,n)=(-1)^n(-alpha)_n$$
        with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
        $$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
        $$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
        As desired.






        share|cite|improve this answer











        $endgroup$









        • 1




          $begingroup$
          Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
          $endgroup$
          – DavidG
          Jan 12 at 23:41










        • $begingroup$
          Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
          $endgroup$
          – clathratus
          Jan 12 at 23:44











        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024896%2fseeking-methods-to-solve-i-int-0-frac-pi2-frac-arctan-left-sin%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        11












        $begingroup$

        $$begin{align}
        int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
        &=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
        &=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
        &=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
        &=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
        &=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
        &=frac{pi}{2}ln(1+sqrt{2}) \
        end{align}$$






        share|cite|improve this answer











        $endgroup$


















          11












          $begingroup$

          $$begin{align}
          int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
          &=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
          &=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
          &=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
          &=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
          &=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
          &=frac{pi}{2}ln(1+sqrt{2}) \
          end{align}$$






          share|cite|improve this answer











          $endgroup$
















            11












            11








            11





            $begingroup$

            $$begin{align}
            int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
            &=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
            &=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
            &=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
            &=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
            &=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
            &=frac{pi}{2}ln(1+sqrt{2}) \
            end{align}$$






            share|cite|improve this answer











            $endgroup$



            $$begin{align}
            int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
            &=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
            &=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
            &=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
            &=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
            &=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
            &=frac{pi}{2}ln(1+sqrt{2}) \
            end{align}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 4 '18 at 0:30

























            answered Dec 4 '18 at 0:06









            FrpzzdFrpzzd

            22.7k840108




            22.7k840108























                10












                $begingroup$

                Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
                $$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
                $$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$






                share|cite|improve this answer











                $endgroup$


















                  10












                  $begingroup$

                  Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
                  $$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
                  $$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$






                  share|cite|improve this answer











                  $endgroup$
















                    10












                    10








                    10





                    $begingroup$

                    Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
                    $$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
                    $$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$






                    share|cite|improve this answer











                    $endgroup$



                    Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
                    $$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
                    $$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 12 at 23:18

























                    answered Dec 4 '18 at 0:34









                    ZackyZacky

                    5,7601856




                    5,7601856























                        7












                        $begingroup$

                        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                        newcommand{dd}{mathrm{d}}
                        newcommand{ds}[1]{displaystyle{#1}}
                        newcommand{expo}[1]{,mathrm{e}^{#1},}
                        newcommand{ic}{mathrm{i}}
                        newcommand{mc}[1]{mathcal{#1}}
                        newcommand{mrm}[1]{mathrm{#1}}
                        newcommand{pars}[1]{left(,{#1},right)}
                        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                        newcommand{verts}[1]{leftvert,{#1},rightvert}$

                        begin{align}
                        I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
                        int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
                        \[5mm] & =
                        int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
                        int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
                        \[5mm] & =
                        int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
                        pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
                        \[5mm] & =
                        int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
                        {root{1/t^{2} + 1}sec^{2}pars{x} over
                        pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
                        \[5mm] & =
                        int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
                        {dd x over x^{2} + 1},dd x,dd t =
                        {pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
                        \[5mm] & =
                        {pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
                        \[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
                        {pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
                        left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
                        \[5mm] & =
                        -,{pi over 4},lnpars{root{2} - 1 over
                        root{2} + 1} =
                        {pi over 4},lnpars{bracks{root{2} + 1}^{2}}
                        \[5mm] & =
                        bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
                        end{align}






                        share|cite|improve this answer











                        $endgroup$













                        • $begingroup$
                          Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
                          $endgroup$
                          – DavidG
                          Dec 5 '18 at 11:09










                        • $begingroup$
                          @DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
                          $endgroup$
                          – Felix Marin
                          Dec 5 '18 at 16:13
















                        7












                        $begingroup$

                        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                        newcommand{dd}{mathrm{d}}
                        newcommand{ds}[1]{displaystyle{#1}}
                        newcommand{expo}[1]{,mathrm{e}^{#1},}
                        newcommand{ic}{mathrm{i}}
                        newcommand{mc}[1]{mathcal{#1}}
                        newcommand{mrm}[1]{mathrm{#1}}
                        newcommand{pars}[1]{left(,{#1},right)}
                        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                        newcommand{verts}[1]{leftvert,{#1},rightvert}$

                        begin{align}
                        I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
                        int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
                        \[5mm] & =
                        int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
                        int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
                        \[5mm] & =
                        int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
                        pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
                        \[5mm] & =
                        int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
                        {root{1/t^{2} + 1}sec^{2}pars{x} over
                        pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
                        \[5mm] & =
                        int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
                        {dd x over x^{2} + 1},dd x,dd t =
                        {pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
                        \[5mm] & =
                        {pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
                        \[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
                        {pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
                        left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
                        \[5mm] & =
                        -,{pi over 4},lnpars{root{2} - 1 over
                        root{2} + 1} =
                        {pi over 4},lnpars{bracks{root{2} + 1}^{2}}
                        \[5mm] & =
                        bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
                        end{align}






                        share|cite|improve this answer











                        $endgroup$













                        • $begingroup$
                          Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
                          $endgroup$
                          – DavidG
                          Dec 5 '18 at 11:09










                        • $begingroup$
                          @DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
                          $endgroup$
                          – Felix Marin
                          Dec 5 '18 at 16:13














                        7












                        7








                        7





                        $begingroup$

                        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                        newcommand{dd}{mathrm{d}}
                        newcommand{ds}[1]{displaystyle{#1}}
                        newcommand{expo}[1]{,mathrm{e}^{#1},}
                        newcommand{ic}{mathrm{i}}
                        newcommand{mc}[1]{mathcal{#1}}
                        newcommand{mrm}[1]{mathrm{#1}}
                        newcommand{pars}[1]{left(,{#1},right)}
                        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                        newcommand{verts}[1]{leftvert,{#1},rightvert}$

                        begin{align}
                        I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
                        int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
                        \[5mm] & =
                        int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
                        int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
                        \[5mm] & =
                        int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
                        pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
                        \[5mm] & =
                        int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
                        {root{1/t^{2} + 1}sec^{2}pars{x} over
                        pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
                        \[5mm] & =
                        int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
                        {dd x over x^{2} + 1},dd x,dd t =
                        {pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
                        \[5mm] & =
                        {pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
                        \[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
                        {pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
                        left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
                        \[5mm] & =
                        -,{pi over 4},lnpars{root{2} - 1 over
                        root{2} + 1} =
                        {pi over 4},lnpars{bracks{root{2} + 1}^{2}}
                        \[5mm] & =
                        bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
                        end{align}






                        share|cite|improve this answer











                        $endgroup$



                        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                        newcommand{dd}{mathrm{d}}
                        newcommand{ds}[1]{displaystyle{#1}}
                        newcommand{expo}[1]{,mathrm{e}^{#1},}
                        newcommand{ic}{mathrm{i}}
                        newcommand{mc}[1]{mathcal{#1}}
                        newcommand{mrm}[1]{mathrm{#1}}
                        newcommand{pars}[1]{left(,{#1},right)}
                        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                        newcommand{verts}[1]{leftvert,{#1},rightvert}$

                        begin{align}
                        I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
                        int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
                        \[5mm] & =
                        int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
                        int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
                        \[5mm] & =
                        int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
                        pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
                        \[5mm] & =
                        int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
                        {root{1/t^{2} + 1}sec^{2}pars{x} over
                        pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
                        \[5mm] & =
                        int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
                        {dd x over x^{2} + 1},dd x,dd t =
                        {pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
                        \[5mm] & =
                        {pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
                        \[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
                        {pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
                        left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
                        \[5mm] & =
                        -,{pi over 4},lnpars{root{2} - 1 over
                        root{2} + 1} =
                        {pi over 4},lnpars{bracks{root{2} + 1}^{2}}
                        \[5mm] & =
                        bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
                        end{align}







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Dec 5 '18 at 3:49

























                        answered Dec 5 '18 at 3:39









                        Felix MarinFelix Marin

                        67.5k7107141




                        67.5k7107141












                        • $begingroup$
                          Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
                          $endgroup$
                          – DavidG
                          Dec 5 '18 at 11:09










                        • $begingroup$
                          @DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
                          $endgroup$
                          – Felix Marin
                          Dec 5 '18 at 16:13


















                        • $begingroup$
                          Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
                          $endgroup$
                          – DavidG
                          Dec 5 '18 at 11:09










                        • $begingroup$
                          @DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
                          $endgroup$
                          – Felix Marin
                          Dec 5 '18 at 16:13
















                        $begingroup$
                        Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
                        $endgroup$
                        – DavidG
                        Dec 5 '18 at 11:09




                        $begingroup$
                        Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
                        $endgroup$
                        – DavidG
                        Dec 5 '18 at 11:09












                        $begingroup$
                        @DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
                        $endgroup$
                        – Felix Marin
                        Dec 5 '18 at 16:13




                        $begingroup$
                        @DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
                        $endgroup$
                        – Felix Marin
                        Dec 5 '18 at 16:13











                        6












                        $begingroup$

                        $$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
                        is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
                        $$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
                        we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.





                        By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula



                        $$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
                        In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.






                        share|cite|improve this answer











                        $endgroup$


















                          6












                          $begingroup$

                          $$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
                          is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
                          $$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
                          we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.





                          By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula



                          $$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
                          In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.






                          share|cite|improve this answer











                          $endgroup$
















                            6












                            6








                            6





                            $begingroup$

                            $$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
                            is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
                            $$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
                            we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.





                            By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula



                            $$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
                            In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.






                            share|cite|improve this answer











                            $endgroup$



                            $$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
                            is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
                            $$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
                            we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.





                            By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula



                            $$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
                            In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Dec 4 '18 at 11:44

























                            answered Dec 4 '18 at 11:24









                            Jack D'AurizioJack D'Aurizio

                            289k33280660




                            289k33280660























                                2












                                $begingroup$

                                Slightly different from @Frpzzd's answer
                                $$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
                                Recall that
                                $$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
                                And since $forall xinBbb R , |sin x|leq1$, we have that
                                $$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
                                So we have that
                                $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
                                I leave it as a challenge to you to prove that
                                $$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                                So
                                $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
                                $$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
                                Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
                                $$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
                                $$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
                                Thus
                                $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
                                then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
                                $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
                                $$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
                                And (drum roll please)...
                                $$I=frac{pi}2operatorname{arcsinh}1$$
                                $$I=frac{pi}2log(1+sqrt2)$$





                                Extra: proving the hypergeometric identity



                                We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.



                                It is easily shown that
                                $$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
                                Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
                                So
                                $$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
                                $$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
                                Then using the identity
                                $$p(alpha,n)=(-1)^n(-alpha)_n$$
                                with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
                                $$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
                                $$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
                                As desired.






                                share|cite|improve this answer











                                $endgroup$









                                • 1




                                  $begingroup$
                                  Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
                                  $endgroup$
                                  – DavidG
                                  Jan 12 at 23:41










                                • $begingroup$
                                  Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
                                  $endgroup$
                                  – clathratus
                                  Jan 12 at 23:44
















                                2












                                $begingroup$

                                Slightly different from @Frpzzd's answer
                                $$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
                                Recall that
                                $$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
                                And since $forall xinBbb R , |sin x|leq1$, we have that
                                $$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
                                So we have that
                                $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
                                I leave it as a challenge to you to prove that
                                $$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                                So
                                $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
                                $$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
                                Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
                                $$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
                                $$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
                                Thus
                                $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
                                then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
                                $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
                                $$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
                                And (drum roll please)...
                                $$I=frac{pi}2operatorname{arcsinh}1$$
                                $$I=frac{pi}2log(1+sqrt2)$$





                                Extra: proving the hypergeometric identity



                                We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.



                                It is easily shown that
                                $$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
                                Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
                                So
                                $$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
                                $$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
                                Then using the identity
                                $$p(alpha,n)=(-1)^n(-alpha)_n$$
                                with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
                                $$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
                                $$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
                                As desired.






                                share|cite|improve this answer











                                $endgroup$









                                • 1




                                  $begingroup$
                                  Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
                                  $endgroup$
                                  – DavidG
                                  Jan 12 at 23:41










                                • $begingroup$
                                  Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
                                  $endgroup$
                                  – clathratus
                                  Jan 12 at 23:44














                                2












                                2








                                2





                                $begingroup$

                                Slightly different from @Frpzzd's answer
                                $$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
                                Recall that
                                $$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
                                And since $forall xinBbb R , |sin x|leq1$, we have that
                                $$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
                                So we have that
                                $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
                                I leave it as a challenge to you to prove that
                                $$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                                So
                                $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
                                $$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
                                Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
                                $$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
                                $$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
                                Thus
                                $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
                                then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
                                $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
                                $$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
                                And (drum roll please)...
                                $$I=frac{pi}2operatorname{arcsinh}1$$
                                $$I=frac{pi}2log(1+sqrt2)$$





                                Extra: proving the hypergeometric identity



                                We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.



                                It is easily shown that
                                $$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
                                Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
                                So
                                $$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
                                $$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
                                Then using the identity
                                $$p(alpha,n)=(-1)^n(-alpha)_n$$
                                with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
                                $$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
                                $$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
                                As desired.






                                share|cite|improve this answer











                                $endgroup$



                                Slightly different from @Frpzzd's answer
                                $$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
                                Recall that
                                $$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
                                And since $forall xinBbb R , |sin x|leq1$, we have that
                                $$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
                                So we have that
                                $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
                                I leave it as a challenge to you to prove that
                                $$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
                                So
                                $$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
                                $$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
                                Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
                                $$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
                                $$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
                                Thus
                                $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
                                then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
                                $$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
                                $$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
                                And (drum roll please)...
                                $$I=frac{pi}2operatorname{arcsinh}1$$
                                $$I=frac{pi}2log(1+sqrt2)$$





                                Extra: proving the hypergeometric identity



                                We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.



                                It is easily shown that
                                $$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
                                Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
                                So
                                $$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
                                $$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
                                Then using the identity
                                $$p(alpha,n)=(-1)^n(-alpha)_n$$
                                with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
                                $$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
                                $$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
                                As desired.







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Jan 12 at 23:20

























                                answered Jan 12 at 23:05









                                clathratusclathratus

                                3,757333




                                3,757333








                                • 1




                                  $begingroup$
                                  Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
                                  $endgroup$
                                  – DavidG
                                  Jan 12 at 23:41










                                • $begingroup$
                                  Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
                                  $endgroup$
                                  – clathratus
                                  Jan 12 at 23:44














                                • 1




                                  $begingroup$
                                  Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
                                  $endgroup$
                                  – DavidG
                                  Jan 12 at 23:41










                                • $begingroup$
                                  Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
                                  $endgroup$
                                  – clathratus
                                  Jan 12 at 23:44








                                1




                                1




                                $begingroup$
                                Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
                                $endgroup$
                                – DavidG
                                Jan 12 at 23:41




                                $begingroup$
                                Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
                                $endgroup$
                                – DavidG
                                Jan 12 at 23:41












                                $begingroup$
                                Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
                                $endgroup$
                                – clathratus
                                Jan 12 at 23:44




                                $begingroup$
                                Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
                                $endgroup$
                                – clathratus
                                Jan 12 at 23:44


















                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024896%2fseeking-methods-to-solve-i-int-0-frac-pi2-frac-arctan-left-sin%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Bundesstraße 106

                                Verónica Boquete

                                Ida-Boy-Ed-Garten