Seeking Methods to solve $ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$
$begingroup$
I was wondering what methods people knew of to solve the following definite integral? I have found a method using Feynman's Trick (see below) but am curious as to whether there are other Feynman's Tricks and/or Methods that can be used to solve it:
$$ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$$
My method:
Let
$$ I(t) = int_{0}^{frac{pi}{2}} frac{arctanleft(tsin(x)right)}{sin(x)}:dx$$
Thus,
begin{align}
I'(t) &= int_{0}^{frac{pi}{2}} frac{sin(x)}{left(t^2sin^2(x) + 1right)sin(x)}:dx = int_{0}^{frac{pi}{2}} frac{1}{t^2sin^2(x) + 1}:dx \
&= left[frac{1}{sqrt{t^2 + 1}} arctanleft(sqrt{t^2 + 1}tan(x) right)right]_{0}^{frac{pi}{2}} = sqrt{t^2 + 1}frac{pi}{2}
end{align}
Thus
$$I(t) = frac{pi}{2}sinh^{-1}(t) + C$$
Now
$$I(0) = C = int_{0}^{frac{pi}{2}} frac{arctanleft(0cdotsin(x)right)}{sin(x)}:dx = 0$$
Thus
$$I(t) = frac{pi}{2}sinh^{-1}(t)$$
And finally,
$$I = I(1) = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx = frac{pi}{2}sinh^{-1}(1) = frac{pi}{2}lnleft|1 + sqrt{2}right|$$
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
I was wondering what methods people knew of to solve the following definite integral? I have found a method using Feynman's Trick (see below) but am curious as to whether there are other Feynman's Tricks and/or Methods that can be used to solve it:
$$ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$$
My method:
Let
$$ I(t) = int_{0}^{frac{pi}{2}} frac{arctanleft(tsin(x)right)}{sin(x)}:dx$$
Thus,
begin{align}
I'(t) &= int_{0}^{frac{pi}{2}} frac{sin(x)}{left(t^2sin^2(x) + 1right)sin(x)}:dx = int_{0}^{frac{pi}{2}} frac{1}{t^2sin^2(x) + 1}:dx \
&= left[frac{1}{sqrt{t^2 + 1}} arctanleft(sqrt{t^2 + 1}tan(x) right)right]_{0}^{frac{pi}{2}} = sqrt{t^2 + 1}frac{pi}{2}
end{align}
Thus
$$I(t) = frac{pi}{2}sinh^{-1}(t) + C$$
Now
$$I(0) = C = int_{0}^{frac{pi}{2}} frac{arctanleft(0cdotsin(x)right)}{sin(x)}:dx = 0$$
Thus
$$I(t) = frac{pi}{2}sinh^{-1}(t)$$
And finally,
$$I = I(1) = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx = frac{pi}{2}sinh^{-1}(1) = frac{pi}{2}lnleft|1 + sqrt{2}right|$$
integration definite-integrals
$endgroup$
2
$begingroup$
Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
$endgroup$
– Frpzzd
Dec 4 '18 at 0:09
$begingroup$
@Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
$endgroup$
– DavidG
Dec 4 '18 at 0:17
$begingroup$
I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
$endgroup$
– clathratus
Jan 12 at 23:22
add a comment |
$begingroup$
I was wondering what methods people knew of to solve the following definite integral? I have found a method using Feynman's Trick (see below) but am curious as to whether there are other Feynman's Tricks and/or Methods that can be used to solve it:
$$ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$$
My method:
Let
$$ I(t) = int_{0}^{frac{pi}{2}} frac{arctanleft(tsin(x)right)}{sin(x)}:dx$$
Thus,
begin{align}
I'(t) &= int_{0}^{frac{pi}{2}} frac{sin(x)}{left(t^2sin^2(x) + 1right)sin(x)}:dx = int_{0}^{frac{pi}{2}} frac{1}{t^2sin^2(x) + 1}:dx \
&= left[frac{1}{sqrt{t^2 + 1}} arctanleft(sqrt{t^2 + 1}tan(x) right)right]_{0}^{frac{pi}{2}} = sqrt{t^2 + 1}frac{pi}{2}
end{align}
Thus
$$I(t) = frac{pi}{2}sinh^{-1}(t) + C$$
Now
$$I(0) = C = int_{0}^{frac{pi}{2}} frac{arctanleft(0cdotsin(x)right)}{sin(x)}:dx = 0$$
Thus
$$I(t) = frac{pi}{2}sinh^{-1}(t)$$
And finally,
$$I = I(1) = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx = frac{pi}{2}sinh^{-1}(1) = frac{pi}{2}lnleft|1 + sqrt{2}right|$$
integration definite-integrals
$endgroup$
I was wondering what methods people knew of to solve the following definite integral? I have found a method using Feynman's Trick (see below) but am curious as to whether there are other Feynman's Tricks and/or Methods that can be used to solve it:
$$ I = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx$$
My method:
Let
$$ I(t) = int_{0}^{frac{pi}{2}} frac{arctanleft(tsin(x)right)}{sin(x)}:dx$$
Thus,
begin{align}
I'(t) &= int_{0}^{frac{pi}{2}} frac{sin(x)}{left(t^2sin^2(x) + 1right)sin(x)}:dx = int_{0}^{frac{pi}{2}} frac{1}{t^2sin^2(x) + 1}:dx \
&= left[frac{1}{sqrt{t^2 + 1}} arctanleft(sqrt{t^2 + 1}tan(x) right)right]_{0}^{frac{pi}{2}} = sqrt{t^2 + 1}frac{pi}{2}
end{align}
Thus
$$I(t) = frac{pi}{2}sinh^{-1}(t) + C$$
Now
$$I(0) = C = int_{0}^{frac{pi}{2}} frac{arctanleft(0cdotsin(x)right)}{sin(x)}:dx = 0$$
Thus
$$I(t) = frac{pi}{2}sinh^{-1}(t)$$
And finally,
$$I = I(1) = int_{0}^{frac{pi}{2}} frac{arctanleft(sin(x)right)}{sin(x)}:dx = frac{pi}{2}sinh^{-1}(1) = frac{pi}{2}lnleft|1 + sqrt{2}right|$$
integration definite-integrals
integration definite-integrals
asked Dec 3 '18 at 23:48
DavidGDavidG
2,1021720
2,1021720
2
$begingroup$
Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
$endgroup$
– Frpzzd
Dec 4 '18 at 0:09
$begingroup$
@Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
$endgroup$
– DavidG
Dec 4 '18 at 0:17
$begingroup$
I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
$endgroup$
– clathratus
Jan 12 at 23:22
add a comment |
2
$begingroup$
Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
$endgroup$
– Frpzzd
Dec 4 '18 at 0:09
$begingroup$
@Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
$endgroup$
– DavidG
Dec 4 '18 at 0:17
$begingroup$
I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
$endgroup$
– clathratus
Jan 12 at 23:22
2
2
$begingroup$
Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
$endgroup$
– Frpzzd
Dec 4 '18 at 0:09
$begingroup$
Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
$endgroup$
– Frpzzd
Dec 4 '18 at 0:09
$begingroup$
@Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
$endgroup$
– DavidG
Dec 4 '18 at 0:17
$begingroup$
@Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
$endgroup$
– DavidG
Dec 4 '18 at 0:17
$begingroup$
I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
$endgroup$
– clathratus
Jan 12 at 23:22
$begingroup$
I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
$endgroup$
– clathratus
Jan 12 at 23:22
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
$$begin{align}
int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
&=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
&=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
&=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
&=frac{pi}{2}ln(1+sqrt{2}) \
end{align}$$
$endgroup$
add a comment |
$begingroup$
Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
$$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
$$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
\[5mm] & =
int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
{root{1/t^{2} + 1}sec^{2}pars{x} over
pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
\[5mm] & =
int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
{dd x over x^{2} + 1},dd x,dd t =
{pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
\[5mm] & =
{pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
\[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
{pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
\[5mm] & =
-,{pi over 4},lnpars{root{2} - 1 over
root{2} + 1} =
{pi over 4},lnpars{bracks{root{2} + 1}^{2}}
\[5mm] & =
bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
end{align}
$endgroup$
$begingroup$
Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
$endgroup$
– DavidG
Dec 5 '18 at 11:09
$begingroup$
@DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
$endgroup$
– Felix Marin
Dec 5 '18 at 16:13
add a comment |
$begingroup$
$$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
$$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.
By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula
$$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.
$endgroup$
add a comment |
$begingroup$
Slightly different from @Frpzzd's answer
$$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
Recall that
$$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
And since $forall xinBbb R , |sin x|leq1$, we have that
$$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
So we have that
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
I leave it as a challenge to you to prove that
$$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
So
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
$$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
$$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
$$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
Thus
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
$$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
And (drum roll please)...
$$I=frac{pi}2operatorname{arcsinh}1$$
$$I=frac{pi}2log(1+sqrt2)$$
Extra: proving the hypergeometric identity
We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.
It is easily shown that
$$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
So
$$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
$$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
Then using the identity
$$p(alpha,n)=(-1)^n(-alpha)_n$$
with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
$$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
$$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
As desired.
$endgroup$
1
$begingroup$
Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
$endgroup$
– DavidG
Jan 12 at 23:41
$begingroup$
Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
$endgroup$
– clathratus
Jan 12 at 23:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024896%2fseeking-methods-to-solve-i-int-0-frac-pi2-frac-arctan-left-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$begin{align}
int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
&=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
&=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
&=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
&=frac{pi}{2}ln(1+sqrt{2}) \
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}
int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
&=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
&=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
&=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
&=frac{pi}{2}ln(1+sqrt{2}) \
end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}
int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
&=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
&=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
&=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
&=frac{pi}{2}ln(1+sqrt{2}) \
end{align}$$
$endgroup$
$$begin{align}
int_0^{pi/2}frac{arctan sin(x)}{sin(x)}dx
&=int_0^{pi/2}frac{1}{sin(x)}sum_{n=0}^infty frac{(-1)^n sin^{2n+1}(x)}{2n+1}dx\
&=sum_{n=0}^infty frac{(-1)^n}{2n+1} int_0^{pi/2}sin^{2n}(x)dx\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2n+1}cdot frac{(2n-1)!!}{(2n)!!}\
&=frac{pi}{2}+frac{pi}{2}sum_{n=1}^infty frac{(-1)^n}{2^{2n-1}(2n+1)}cdot binom{2n-1}{n} \
&=frac{pi}{2}+frac{pi}{2}cdot (sinh^{-1}(1)-1) \
&=frac{pi}{2}ln(1+sqrt{2}) \
end{align}$$
edited Dec 4 '18 at 0:30
answered Dec 4 '18 at 0:06
FrpzzdFrpzzd
22.7k840108
22.7k840108
add a comment |
add a comment |
$begingroup$
Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
$$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
$$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$
$endgroup$
add a comment |
$begingroup$
Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
$$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
$$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$
$endgroup$
add a comment |
$begingroup$
Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
$$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
$$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$
$endgroup$
Using the following relation: $$frac{arctan x}{x}=int_0^1 frac{dy}{1+(xy)^2} Rightarrow color{red}{frac{arctan(sin x)}{sin x}=int_0^1 frac{dy}{1+(sin^2 x )y^2}}$$ We can rewrite the original integral as:
$$I = color{blue}{int_{0}^{frac{pi}{2}}} color{red}{frac{arctanleft(sin xright)}{sin x}}color{blue}{dx}=color{blue}{int_0^frac{pi}{2}}color{red}{int_0^1 frac{dy}{1+(sin^2 x )y^2}}color{blue}{dx}=color{red}{int_0^1} color{blue}{int_0^frac{pi}{2}}color{purple}{frac{1}{1+(sin^2 x )y^2}}color{blue}{dx}color{red}{dy}$$
$$=int_0^1 left(frac{arctanleft(sqrt{1+y^2}cdottan(x)right) }{sqrt{1+y^2}} bigg|_0^frac{pi}{2}right) dy=frac{pi}{2}int_0^1 frac{dy}{sqrt{1+y^2}}=frac{pi}{2}lnleft(1+sqrt 2right)$$
edited Jan 12 at 23:18
answered Dec 4 '18 at 0:34
ZackyZacky
5,7601856
5,7601856
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
\[5mm] & =
int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
{root{1/t^{2} + 1}sec^{2}pars{x} over
pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
\[5mm] & =
int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
{dd x over x^{2} + 1},dd x,dd t =
{pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
\[5mm] & =
{pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
\[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
{pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
\[5mm] & =
-,{pi over 4},lnpars{root{2} - 1 over
root{2} + 1} =
{pi over 4},lnpars{bracks{root{2} + 1}^{2}}
\[5mm] & =
bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
end{align}
$endgroup$
$begingroup$
Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
$endgroup$
– DavidG
Dec 5 '18 at 11:09
$begingroup$
@DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
$endgroup$
– Felix Marin
Dec 5 '18 at 16:13
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
\[5mm] & =
int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
{root{1/t^{2} + 1}sec^{2}pars{x} over
pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
\[5mm] & =
int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
{dd x over x^{2} + 1},dd x,dd t =
{pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
\[5mm] & =
{pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
\[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
{pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
\[5mm] & =
-,{pi over 4},lnpars{root{2} - 1 over
root{2} + 1} =
{pi over 4},lnpars{bracks{root{2} + 1}^{2}}
\[5mm] & =
bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
end{align}
$endgroup$
$begingroup$
Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
$endgroup$
– DavidG
Dec 5 '18 at 11:09
$begingroup$
@DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
$endgroup$
– Felix Marin
Dec 5 '18 at 16:13
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
\[5mm] & =
int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
{root{1/t^{2} + 1}sec^{2}pars{x} over
pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
\[5mm] & =
int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
{dd x over x^{2} + 1},dd x,dd t =
{pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
\[5mm] & =
{pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
\[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
{pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
\[5mm] & =
-,{pi over 4},lnpars{root{2} - 1 over
root{2} + 1} =
{pi over 4},lnpars{bracks{root{2} + 1}^{2}}
\[5mm] & =
bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
I & equiv int_{0}^{pi/2}{arctanpars{sinpars{x}} over sinpars{x}},dd x =
int_{0}^{pi/2}int_{1}^{infty}{dd t over t^{2} + sin^{2}pars{x}},dd x
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{dd x over sin^{2}pars{x} + t^{2}},dd t =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over tan^{2}pars{x} + t^{2}sec^{2}pars{x}},dd x,dd t
\[5mm] & =
int_{1}^{infty}int_{0}^{pi/2}{sec^{2}pars{x} over
pars{1 + t^{2}}tan^{2}pars{x} + t^{2}},dd x,dd t
\[5mm] & =
int_{1}^{infty}{1 over root{1/t^{2} + 1}}int_{0}^{pi/2}
{root{1/t^{2} + 1}sec^{2}pars{x} over
pars{1/t^{2} + 1}tan^{2}pars{x} + 1},dd x,{dd t over t^{2}}
\[5mm] & =
int_{1}^{infty}{1 over troot{t^{2} + 1}}int_{0}^{infty}
{dd x over x^{2} + 1},dd x,dd t =
{pi over 2}int_{1}^{infty}{dd t over troot{t^{2} + 1}}
\[5mm] & =
{pi over 4}int_{1}^{infty}{dd t over troot{t + 1}}
\[5mm] & stackrel{t mapsto t^{2} - 1}{=},,,
{pi over 2}int_{root{2}}^{infty}{dd t over t^{2} - 1} =
left.{pi over 4}lnpars{t - 1 over t + 1},rightvert_{ root{2}}^{ to infty}
\[5mm] & =
-,{pi over 4},lnpars{root{2} - 1 over
root{2} + 1} =
{pi over 4},lnpars{bracks{root{2} + 1}^{2}}
\[5mm] & =
bbx{{pi over 2},lnpars{1 + root{2}}} approx 1.3845
end{align}
edited Dec 5 '18 at 3:49
answered Dec 5 '18 at 3:39
Felix MarinFelix Marin
67.5k7107141
67.5k7107141
$begingroup$
Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
$endgroup$
– DavidG
Dec 5 '18 at 11:09
$begingroup$
@DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
$endgroup$
– Felix Marin
Dec 5 '18 at 16:13
add a comment |
$begingroup$
Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
$endgroup$
– DavidG
Dec 5 '18 at 11:09
$begingroup$
@DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
$endgroup$
– Felix Marin
Dec 5 '18 at 16:13
$begingroup$
Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
$endgroup$
– DavidG
Dec 5 '18 at 11:09
$begingroup$
Absolutely love this method. With respect to your method of taking the integrand and converting to an integral - do you know of any texts/examples that explain the process in detail? Thanks again for the post.
$endgroup$
– DavidG
Dec 5 '18 at 11:09
$begingroup$
@DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
$endgroup$
– Felix Marin
Dec 5 '18 at 16:13
$begingroup$
@DavidG More or less, it's similar to "Feynmann Trick". We learn many tricks "along the way". For example, in MSE.
$endgroup$
– Felix Marin
Dec 5 '18 at 16:13
add a comment |
$begingroup$
$$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
$$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.
By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula
$$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.
$endgroup$
add a comment |
$begingroup$
$$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
$$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.
By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula
$$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.
$endgroup$
add a comment |
$begingroup$
$$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
$$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.
By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula
$$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.
$endgroup$
$$ I = int_{0}^{1}frac{arctan x}{xsqrt{1-x^2}},dx =sum_{ngeq 0}frac{(-1)^n}{2n+1}int_{0}^{1}frac{x^{2n}}{sqrt{1-x^2}},dx=frac{pi}{2}sum_{ngeq 0}frac{(-1)^n}{(2n+1)}cdotfrac{binom{2n}{n}}{4^n}$$
is a fairly simple hypergeometric series, namely $frac{pi}{2}cdotphantom{}_2 F_1left(tfrac{1}{2},tfrac{1}{2};tfrac{3}{2};-1right)$. Since
$$ frac{1}{sqrt{1-x}}=sum_{ngeq 0}frac{binom{2n}{n}}{4^n}x^n,qquad arcsin(x)=sum_{ngeq 0}frac{binom{2n}{n}}{(2n+1)4^n} x^{2n+1} $$
we clearly have $I=frac{pi}{2},text{arcsin} color{red}{text{h}}(1) = color{red}{frac{pi}{2}log(1+sqrt{2})}$.
By enforcing the substitution $xmapstofrac{1-x}{1+x}$ (involution) and exploiting the Maclaurin series of $frac{1}{x}left(frac{pi}{4}-arctan(1-x)right)$ I got the mildly interesting acceleration formula
$$ frac{pi}{2}log(1+sqrt{2})=small{sum_{kgeq 0}(-1)^kleft[frac{2^{6k}}{(4k+1)(8k+1)binom{8k}{4k}}+frac{2^{6k+2}}{(4k+2)(8k+3)binom{8k+2}{4k+1}}+frac{2^{6k+3}}{(4k+3)(8k+5)binom{8k+4}{4k+2}}right]}. $$
In this case we have that a $phantom{}_2 F_1(ldots,-1)$ decomposes as a linear combination of three $phantom{}_6 F_5(ldots,-1/4)$.
edited Dec 4 '18 at 11:44
answered Dec 4 '18 at 11:24
Jack D'AurizioJack D'Aurizio
289k33280660
289k33280660
add a comment |
add a comment |
$begingroup$
Slightly different from @Frpzzd's answer
$$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
Recall that
$$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
And since $forall xinBbb R , |sin x|leq1$, we have that
$$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
So we have that
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
I leave it as a challenge to you to prove that
$$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
So
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
$$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
$$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
$$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
Thus
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
$$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
And (drum roll please)...
$$I=frac{pi}2operatorname{arcsinh}1$$
$$I=frac{pi}2log(1+sqrt2)$$
Extra: proving the hypergeometric identity
We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.
It is easily shown that
$$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
So
$$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
$$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
Then using the identity
$$p(alpha,n)=(-1)^n(-alpha)_n$$
with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
$$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
$$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
As desired.
$endgroup$
1
$begingroup$
Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
$endgroup$
– DavidG
Jan 12 at 23:41
$begingroup$
Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
$endgroup$
– clathratus
Jan 12 at 23:44
add a comment |
$begingroup$
Slightly different from @Frpzzd's answer
$$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
Recall that
$$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
And since $forall xinBbb R , |sin x|leq1$, we have that
$$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
So we have that
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
I leave it as a challenge to you to prove that
$$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
So
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
$$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
$$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
$$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
Thus
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
$$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
And (drum roll please)...
$$I=frac{pi}2operatorname{arcsinh}1$$
$$I=frac{pi}2log(1+sqrt2)$$
Extra: proving the hypergeometric identity
We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.
It is easily shown that
$$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
So
$$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
$$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
Then using the identity
$$p(alpha,n)=(-1)^n(-alpha)_n$$
with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
$$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
$$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
As desired.
$endgroup$
1
$begingroup$
Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
$endgroup$
– DavidG
Jan 12 at 23:41
$begingroup$
Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
$endgroup$
– clathratus
Jan 12 at 23:44
add a comment |
$begingroup$
Slightly different from @Frpzzd's answer
$$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
Recall that
$$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
And since $forall xinBbb R , |sin x|leq1$, we have that
$$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
So we have that
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
I leave it as a challenge to you to prove that
$$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
So
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
$$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
$$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
$$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
Thus
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
$$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
And (drum roll please)...
$$I=frac{pi}2operatorname{arcsinh}1$$
$$I=frac{pi}2log(1+sqrt2)$$
Extra: proving the hypergeometric identity
We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.
It is easily shown that
$$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
So
$$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
$$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
Then using the identity
$$p(alpha,n)=(-1)^n(-alpha)_n$$
with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
$$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
$$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
As desired.
$endgroup$
Slightly different from @Frpzzd's answer
$$I=int_0^{pi/2}frac{arctansin x}{sin x}mathrm dx$$
Recall that
$$arctan x=sum_{ngeq0}(-1)^nfrac{x^{2n+1}}{2n+1},qquad |x|leq1$$
And since $forall xinBbb R , |sin x|leq1$, we have that
$$arctansin x=sum_{ngeq0}frac{(-1)^n}{2n+1}sin(x)^{2n+1},qquad forall xinBbb R$$
So we have that
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}int_0^{pi/2}sin(x)^{2n}mathrm dx$$
I leave it as a challenge to you to prove that
$$int_0^{pi/2}sin(x)^acos(x)^bmathrm dx=frac{Gamma(frac{a+1}2)Gamma(frac{b+1}2)}{2Gamma(frac{a+b}2+1)}$$
So
$$I=sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(frac{2n+1}2)Gamma(frac{1}2)}{2Gamma(frac{2n}2+1)}$$
$$I=frac{sqrtpi}2sum_{ngeq0}frac{(-1)^n}{2n+1}frac{Gamma(n+frac{1}2)}{Gamma(n+1)}$$
Then recall that $frac{d}{dx}operatorname{arcsinh}x=(1+x^2)^{-1/2}$. This function has the hypergeometric representation
$$frac{d}{dx}operatorname{arcsinh}x=,_1mathrm{F}_0[1/2;;-x^2]$$
$$frac{d}{dx}operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}x^{2n}$$
Thus
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^n(1/2)_n}{n!}frac{x^{2n+1}}{2n+1}$$
then recalling that $(a)_n=frac{Gamma(a+n)}{Gamma(a)}$, we have
$$operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(frac12)Gamma(n+1)}$$
$$sqrt{pi},operatorname{arcsinh}x=sum_{ngeq0}frac{(-1)^nx^{2n+1}}{2n+1}frac{Gamma(n+frac12)}{Gamma(n+1)}$$
And (drum roll please)...
$$I=frac{pi}2operatorname{arcsinh}1$$
$$I=frac{pi}2log(1+sqrt2)$$
Extra: proving the hypergeometric identity
We start by finding the Taylor Series representation for $x^alpha$ about $x=1$. Here $mathrm{D}^n$ represents differentiating $n$ times wrt $x$.
It is easily shown that
$$mathrm{D}^nx^alpha=p(alpha,n)x^{alpha-n}$$
Where $p(alpha,n)=prod_{k=1}^{n}(alpha-k+1)$ is the falling factorial. Hence $$mathrm{D}_{x=1}^nx^alpha=p(alpha,n)$$
So
$$x^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}(x-1)^n$$
$$(1+x)^{alpha}=sum_{ngeq0}frac{p(alpha,n)}{n!}x^n$$
Then using the identity
$$p(alpha,n)=(-1)^n(-alpha)_n$$
with $(x)_n=frac{Gamma(x+n)}{Gamma(x)}$, we have that
$$(1+x)^alpha=,_1mathrm{F}_0[-alpha;;-x]$$
$$(1+x^2)^{-1/2}=,_1mathrm{F}_0[1/2;;-x^2]$$
As desired.
edited Jan 12 at 23:20
answered Jan 12 at 23:05
clathratusclathratus
3,757333
3,757333
1
$begingroup$
Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
$endgroup$
– DavidG
Jan 12 at 23:41
$begingroup$
Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
$endgroup$
– clathratus
Jan 12 at 23:44
add a comment |
1
$begingroup$
Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
$endgroup$
– DavidG
Jan 12 at 23:41
$begingroup$
Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
$endgroup$
– clathratus
Jan 12 at 23:44
1
1
$begingroup$
Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
$endgroup$
– DavidG
Jan 12 at 23:41
$begingroup$
Nice solution. Especially enjoy the hypergeometric identity component. I need to spend more time focussing on these functions! I've been living in the land of Polygamma Functions lately :-)
$endgroup$
– DavidG
Jan 12 at 23:41
$begingroup$
Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
$endgroup$
– clathratus
Jan 12 at 23:44
$begingroup$
Thank you :) I'm finishing my stay in polylogarithm land and working my way towards polygamma land.
$endgroup$
– clathratus
Jan 12 at 23:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024896%2fseeking-methods-to-solve-i-int-0-frac-pi2-frac-arctan-left-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Accepting an answer will take your question off of the "unanswered questions" page, and you probably don't want to do that until you've seen a wider variety of answers.
$endgroup$
– Frpzzd
Dec 4 '18 at 0:09
$begingroup$
@Frpzzd - Thanks again for your info. I have removed the "answered" status for the moment.
$endgroup$
– DavidG
Dec 4 '18 at 0:17
$begingroup$
I know I am a bit late in the game, but I just found an answer which I'm pretty proud of :)
$endgroup$
– clathratus
Jan 12 at 23:22