Calculate the following: $limlimits_{nto infty}int_X n log(1+(frac{f}{n})^{alpha})dmu$
up vote
4
down vote
favorite
Let$(X,mathcal{M},mu)$ be measure space, $f$ is non-negative integrable function on $X$, and $int_X fdmu=c,0<c<infty$.Then calculate the following:
$$limlimits_{nto infty}int_X n logleft(1+left(frac{f}{n} right)^{alpha} right)dmu$$
depending on positive $alpha$.
(1). When $f>0$, calculate $limlimits_{nto infty}n logleft(1+left(frac{f}{n} right)^{alpha} right)$.
(2). When $0<alpha<1$, use Fatou's Lemma.
(3). When $alpha=1$, Using $xge 0$, then $log(1+x)le x$, then use Lebesgue convergence theorem.
(4). When $alpha>1$, Using $xge 0$, then $1+x^{alpha} le (1+x)^{alpha}$.
My Solution:
(1). $nlog left(1+left(frac{f}{n}right)^{alpha} right) = log(1+frac{f^alpha}{n^alpha})^n=logsqrt[alpha]{left(1+dfrac{f^alpha}{n^alpha}right)^{n^alpha}} to logsqrt[alpha]{e^{f^alpha}}=f$ as $nto infty$
(2). I don't know the answer.
(3). When $alpha=1$, $|nlog(1+f/n)|le n(f/n)=f$, using domainted convergence theorem.
$limlimits_{nto infty}int_X nlog(1+(frac{f}{n})^{alpha})dmu=int_X fdmu=c$
(4). As (3), $|nlog(1+(f/n)^alpha)|<nlog(1+f/n)^{alpha}=log(1+f/n)^{nalpha}le falpha$, as $nto infty$.
Then $limlimits_{nto infty}int_X nlog(1+(frac{f}{n})^{alpha})dmu=int_X alpha fdmu=alpha c$.
measure-theory
add a comment |
up vote
4
down vote
favorite
Let$(X,mathcal{M},mu)$ be measure space, $f$ is non-negative integrable function on $X$, and $int_X fdmu=c,0<c<infty$.Then calculate the following:
$$limlimits_{nto infty}int_X n logleft(1+left(frac{f}{n} right)^{alpha} right)dmu$$
depending on positive $alpha$.
(1). When $f>0$, calculate $limlimits_{nto infty}n logleft(1+left(frac{f}{n} right)^{alpha} right)$.
(2). When $0<alpha<1$, use Fatou's Lemma.
(3). When $alpha=1$, Using $xge 0$, then $log(1+x)le x$, then use Lebesgue convergence theorem.
(4). When $alpha>1$, Using $xge 0$, then $1+x^{alpha} le (1+x)^{alpha}$.
My Solution:
(1). $nlog left(1+left(frac{f}{n}right)^{alpha} right) = log(1+frac{f^alpha}{n^alpha})^n=logsqrt[alpha]{left(1+dfrac{f^alpha}{n^alpha}right)^{n^alpha}} to logsqrt[alpha]{e^{f^alpha}}=f$ as $nto infty$
(2). I don't know the answer.
(3). When $alpha=1$, $|nlog(1+f/n)|le n(f/n)=f$, using domainted convergence theorem.
$limlimits_{nto infty}int_X nlog(1+(frac{f}{n})^{alpha})dmu=int_X fdmu=c$
(4). As (3), $|nlog(1+(f/n)^alpha)|<nlog(1+f/n)^{alpha}=log(1+f/n)^{nalpha}le falpha$, as $nto infty$.
Then $limlimits_{nto infty}int_X nlog(1+(frac{f}{n})^{alpha})dmu=int_X alpha fdmu=alpha c$.
measure-theory
1
Your first equality in (1) isn't correct. The exponent $n^alpha$ should be $nalpha$. What about using L'Hospital's rule?
– Umberto P.
May 7 '13 at 13:52
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
Let$(X,mathcal{M},mu)$ be measure space, $f$ is non-negative integrable function on $X$, and $int_X fdmu=c,0<c<infty$.Then calculate the following:
$$limlimits_{nto infty}int_X n logleft(1+left(frac{f}{n} right)^{alpha} right)dmu$$
depending on positive $alpha$.
(1). When $f>0$, calculate $limlimits_{nto infty}n logleft(1+left(frac{f}{n} right)^{alpha} right)$.
(2). When $0<alpha<1$, use Fatou's Lemma.
(3). When $alpha=1$, Using $xge 0$, then $log(1+x)le x$, then use Lebesgue convergence theorem.
(4). When $alpha>1$, Using $xge 0$, then $1+x^{alpha} le (1+x)^{alpha}$.
My Solution:
(1). $nlog left(1+left(frac{f}{n}right)^{alpha} right) = log(1+frac{f^alpha}{n^alpha})^n=logsqrt[alpha]{left(1+dfrac{f^alpha}{n^alpha}right)^{n^alpha}} to logsqrt[alpha]{e^{f^alpha}}=f$ as $nto infty$
(2). I don't know the answer.
(3). When $alpha=1$, $|nlog(1+f/n)|le n(f/n)=f$, using domainted convergence theorem.
$limlimits_{nto infty}int_X nlog(1+(frac{f}{n})^{alpha})dmu=int_X fdmu=c$
(4). As (3), $|nlog(1+(f/n)^alpha)|<nlog(1+f/n)^{alpha}=log(1+f/n)^{nalpha}le falpha$, as $nto infty$.
Then $limlimits_{nto infty}int_X nlog(1+(frac{f}{n})^{alpha})dmu=int_X alpha fdmu=alpha c$.
measure-theory
Let$(X,mathcal{M},mu)$ be measure space, $f$ is non-negative integrable function on $X$, and $int_X fdmu=c,0<c<infty$.Then calculate the following:
$$limlimits_{nto infty}int_X n logleft(1+left(frac{f}{n} right)^{alpha} right)dmu$$
depending on positive $alpha$.
(1). When $f>0$, calculate $limlimits_{nto infty}n logleft(1+left(frac{f}{n} right)^{alpha} right)$.
(2). When $0<alpha<1$, use Fatou's Lemma.
(3). When $alpha=1$, Using $xge 0$, then $log(1+x)le x$, then use Lebesgue convergence theorem.
(4). When $alpha>1$, Using $xge 0$, then $1+x^{alpha} le (1+x)^{alpha}$.
My Solution:
(1). $nlog left(1+left(frac{f}{n}right)^{alpha} right) = log(1+frac{f^alpha}{n^alpha})^n=logsqrt[alpha]{left(1+dfrac{f^alpha}{n^alpha}right)^{n^alpha}} to logsqrt[alpha]{e^{f^alpha}}=f$ as $nto infty$
(2). I don't know the answer.
(3). When $alpha=1$, $|nlog(1+f/n)|le n(f/n)=f$, using domainted convergence theorem.
$limlimits_{nto infty}int_X nlog(1+(frac{f}{n})^{alpha})dmu=int_X fdmu=c$
(4). As (3), $|nlog(1+(f/n)^alpha)|<nlog(1+f/n)^{alpha}=log(1+f/n)^{nalpha}le falpha$, as $nto infty$.
Then $limlimits_{nto infty}int_X nlog(1+(frac{f}{n})^{alpha})dmu=int_X alpha fdmu=alpha c$.
measure-theory
measure-theory
edited May 8 '13 at 17:12
asked May 6 '13 at 12:08
Jimmy Wang
1861112
1861112
1
Your first equality in (1) isn't correct. The exponent $n^alpha$ should be $nalpha$. What about using L'Hospital's rule?
– Umberto P.
May 7 '13 at 13:52
add a comment |
1
Your first equality in (1) isn't correct. The exponent $n^alpha$ should be $nalpha$. What about using L'Hospital's rule?
– Umberto P.
May 7 '13 at 13:52
1
1
Your first equality in (1) isn't correct. The exponent $n^alpha$ should be $nalpha$. What about using L'Hospital's rule?
– Umberto P.
May 7 '13 at 13:52
Your first equality in (1) isn't correct. The exponent $n^alpha$ should be $nalpha$. What about using L'Hospital's rule?
– Umberto P.
May 7 '13 at 13:52
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
Fatou's Lemma says that, if $left(f_{n}right)$ is a sequence of
positive measurable functions, then
$$
int_{X}liminf f_{n}dmuleqliminfint_{X}f_{n}dmu.
$$
It is not an equality, but it does not require monotonicity nor domination.
Hence if $lim f_{n}=+infty$, then the two members of the inequality
are equal to $+infty$.
Here, If $alpha<1$, then $nlogleft(1+left(frac{f}{n}right)^{alpha}right)rightarrow+infty$.
Hence, by Fatou's lemma, $int_{X}nlogleft(1+left(frac{f}{n}right)^{alpha}right)dmurightarrow+infty$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Fatou's Lemma says that, if $left(f_{n}right)$ is a sequence of
positive measurable functions, then
$$
int_{X}liminf f_{n}dmuleqliminfint_{X}f_{n}dmu.
$$
It is not an equality, but it does not require monotonicity nor domination.
Hence if $lim f_{n}=+infty$, then the two members of the inequality
are equal to $+infty$.
Here, If $alpha<1$, then $nlogleft(1+left(frac{f}{n}right)^{alpha}right)rightarrow+infty$.
Hence, by Fatou's lemma, $int_{X}nlogleft(1+left(frac{f}{n}right)^{alpha}right)dmurightarrow+infty$.
add a comment |
up vote
0
down vote
Fatou's Lemma says that, if $left(f_{n}right)$ is a sequence of
positive measurable functions, then
$$
int_{X}liminf f_{n}dmuleqliminfint_{X}f_{n}dmu.
$$
It is not an equality, but it does not require monotonicity nor domination.
Hence if $lim f_{n}=+infty$, then the two members of the inequality
are equal to $+infty$.
Here, If $alpha<1$, then $nlogleft(1+left(frac{f}{n}right)^{alpha}right)rightarrow+infty$.
Hence, by Fatou's lemma, $int_{X}nlogleft(1+left(frac{f}{n}right)^{alpha}right)dmurightarrow+infty$.
add a comment |
up vote
0
down vote
up vote
0
down vote
Fatou's Lemma says that, if $left(f_{n}right)$ is a sequence of
positive measurable functions, then
$$
int_{X}liminf f_{n}dmuleqliminfint_{X}f_{n}dmu.
$$
It is not an equality, but it does not require monotonicity nor domination.
Hence if $lim f_{n}=+infty$, then the two members of the inequality
are equal to $+infty$.
Here, If $alpha<1$, then $nlogleft(1+left(frac{f}{n}right)^{alpha}right)rightarrow+infty$.
Hence, by Fatou's lemma, $int_{X}nlogleft(1+left(frac{f}{n}right)^{alpha}right)dmurightarrow+infty$.
Fatou's Lemma says that, if $left(f_{n}right)$ is a sequence of
positive measurable functions, then
$$
int_{X}liminf f_{n}dmuleqliminfint_{X}f_{n}dmu.
$$
It is not an equality, but it does not require monotonicity nor domination.
Hence if $lim f_{n}=+infty$, then the two members of the inequality
are equal to $+infty$.
Here, If $alpha<1$, then $nlogleft(1+left(frac{f}{n}right)^{alpha}right)rightarrow+infty$.
Hence, by Fatou's lemma, $int_{X}nlogleft(1+left(frac{f}{n}right)^{alpha}right)dmurightarrow+infty$.
answered Nov 25 '17 at 16:28
ratalan
30115
30115
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f383199%2fcalculate-the-following-lim-limits-n-to-infty-int-x-n-log1-fracfn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Your first equality in (1) isn't correct. The exponent $n^alpha$ should be $nalpha$. What about using L'Hospital's rule?
– Umberto P.
May 7 '13 at 13:52