$d in mathbb{N}$, that is not a square, show that the continued fractions for following numbers are purely...











up vote
2
down vote

favorite













Let $d in mathbb{N}$ such that $d$ not a square number. Now show
that the continued fractions for $sqrt{d} + lfloorsqrt{d}rfloor$
and $frac{1}{(sqrt{d} - lfloorsqrt{d}rfloor)}$ are purely
periodic.



Furthermore, show that there exists $m in N$ so that $sqrt{d}$ is
periodic from the second number, i.e. $[a_0$; $overline
> {a_1a_2,...,a_m}]$
.




I tried to solve this, but I do not have an idea where to start.
Some of my attempts:



$1)$ For irrational number a of a degree $2$, and assuming $a'$ is the other root of the minimal polynomial of $a$, that $-1 < a' < 0$.



$~~1.1)$ Define following series $x_n$ for $a =[a_0$; ${a_1,a_2,...}$], then, $x_{n+1}$ is the real number such that $a =[a_0$; ${a_1,a_2,..., x_{n+1}}$] and that $x_n$ = $a_n$ + $frac{1}{x_{n+1}}$.



$~~1.2)$ Show that for any $n inmathbb{N}$, $-1 < x_{n+1} < 0$ and that $a_n=lfloor$$frac{-1}{x_{n+1}}$$rfloor$.



I've shown $1.1$ and $1.2$



Thank you.










share|cite|improve this question
























  • Here, we ask that you show your efforts and thoughts. Do not merely ask us to do it for you.
    – GEdgar
    Aug 30 at 16:40










  • What book or notes are you using? Both your questions are standard results, this one has a pretty long answer, not really suitable for online
    – Will Jagy
    Aug 30 at 16:45










  • @WillJagy Hi, I'm using following book link. Where can I find said results?
    – MicroT
    Aug 31 at 15:08












  • @MicroT See the My research section of math.stackexchange.com/questions/2749487/…. It shows the 4 continued fraction references that I have found helpful. As suggested by Will Jagy's comment, it is better to find and explore good continued fraction references, than to attempt to derive results yourself.
    – user2661923
    Sep 1 at 17:29















up vote
2
down vote

favorite













Let $d in mathbb{N}$ such that $d$ not a square number. Now show
that the continued fractions for $sqrt{d} + lfloorsqrt{d}rfloor$
and $frac{1}{(sqrt{d} - lfloorsqrt{d}rfloor)}$ are purely
periodic.



Furthermore, show that there exists $m in N$ so that $sqrt{d}$ is
periodic from the second number, i.e. $[a_0$; $overline
> {a_1a_2,...,a_m}]$
.




I tried to solve this, but I do not have an idea where to start.
Some of my attempts:



$1)$ For irrational number a of a degree $2$, and assuming $a'$ is the other root of the minimal polynomial of $a$, that $-1 < a' < 0$.



$~~1.1)$ Define following series $x_n$ for $a =[a_0$; ${a_1,a_2,...}$], then, $x_{n+1}$ is the real number such that $a =[a_0$; ${a_1,a_2,..., x_{n+1}}$] and that $x_n$ = $a_n$ + $frac{1}{x_{n+1}}$.



$~~1.2)$ Show that for any $n inmathbb{N}$, $-1 < x_{n+1} < 0$ and that $a_n=lfloor$$frac{-1}{x_{n+1}}$$rfloor$.



I've shown $1.1$ and $1.2$



Thank you.










share|cite|improve this question
























  • Here, we ask that you show your efforts and thoughts. Do not merely ask us to do it for you.
    – GEdgar
    Aug 30 at 16:40










  • What book or notes are you using? Both your questions are standard results, this one has a pretty long answer, not really suitable for online
    – Will Jagy
    Aug 30 at 16:45










  • @WillJagy Hi, I'm using following book link. Where can I find said results?
    – MicroT
    Aug 31 at 15:08












  • @MicroT See the My research section of math.stackexchange.com/questions/2749487/…. It shows the 4 continued fraction references that I have found helpful. As suggested by Will Jagy's comment, it is better to find and explore good continued fraction references, than to attempt to derive results yourself.
    – user2661923
    Sep 1 at 17:29













up vote
2
down vote

favorite









up vote
2
down vote

favorite












Let $d in mathbb{N}$ such that $d$ not a square number. Now show
that the continued fractions for $sqrt{d} + lfloorsqrt{d}rfloor$
and $frac{1}{(sqrt{d} - lfloorsqrt{d}rfloor)}$ are purely
periodic.



Furthermore, show that there exists $m in N$ so that $sqrt{d}$ is
periodic from the second number, i.e. $[a_0$; $overline
> {a_1a_2,...,a_m}]$
.




I tried to solve this, but I do not have an idea where to start.
Some of my attempts:



$1)$ For irrational number a of a degree $2$, and assuming $a'$ is the other root of the minimal polynomial of $a$, that $-1 < a' < 0$.



$~~1.1)$ Define following series $x_n$ for $a =[a_0$; ${a_1,a_2,...}$], then, $x_{n+1}$ is the real number such that $a =[a_0$; ${a_1,a_2,..., x_{n+1}}$] and that $x_n$ = $a_n$ + $frac{1}{x_{n+1}}$.



$~~1.2)$ Show that for any $n inmathbb{N}$, $-1 < x_{n+1} < 0$ and that $a_n=lfloor$$frac{-1}{x_{n+1}}$$rfloor$.



I've shown $1.1$ and $1.2$



Thank you.










share|cite|improve this question
















Let $d in mathbb{N}$ such that $d$ not a square number. Now show
that the continued fractions for $sqrt{d} + lfloorsqrt{d}rfloor$
and $frac{1}{(sqrt{d} - lfloorsqrt{d}rfloor)}$ are purely
periodic.



Furthermore, show that there exists $m in N$ so that $sqrt{d}$ is
periodic from the second number, i.e. $[a_0$; $overline
> {a_1a_2,...,a_m}]$
.




I tried to solve this, but I do not have an idea where to start.
Some of my attempts:



$1)$ For irrational number a of a degree $2$, and assuming $a'$ is the other root of the minimal polynomial of $a$, that $-1 < a' < 0$.



$~~1.1)$ Define following series $x_n$ for $a =[a_0$; ${a_1,a_2,...}$], then, $x_{n+1}$ is the real number such that $a =[a_0$; ${a_1,a_2,..., x_{n+1}}$] and that $x_n$ = $a_n$ + $frac{1}{x_{n+1}}$.



$~~1.2)$ Show that for any $n inmathbb{N}$, $-1 < x_{n+1} < 0$ and that $a_n=lfloor$$frac{-1}{x_{n+1}}$$rfloor$.



I've shown $1.1$ and $1.2$



Thank you.







prime-numbers continued-fractions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 at 12:10









Klangen

1,32811130




1,32811130










asked Aug 30 at 16:34









MicroT

235




235












  • Here, we ask that you show your efforts and thoughts. Do not merely ask us to do it for you.
    – GEdgar
    Aug 30 at 16:40










  • What book or notes are you using? Both your questions are standard results, this one has a pretty long answer, not really suitable for online
    – Will Jagy
    Aug 30 at 16:45










  • @WillJagy Hi, I'm using following book link. Where can I find said results?
    – MicroT
    Aug 31 at 15:08












  • @MicroT See the My research section of math.stackexchange.com/questions/2749487/…. It shows the 4 continued fraction references that I have found helpful. As suggested by Will Jagy's comment, it is better to find and explore good continued fraction references, than to attempt to derive results yourself.
    – user2661923
    Sep 1 at 17:29


















  • Here, we ask that you show your efforts and thoughts. Do not merely ask us to do it for you.
    – GEdgar
    Aug 30 at 16:40










  • What book or notes are you using? Both your questions are standard results, this one has a pretty long answer, not really suitable for online
    – Will Jagy
    Aug 30 at 16:45










  • @WillJagy Hi, I'm using following book link. Where can I find said results?
    – MicroT
    Aug 31 at 15:08












  • @MicroT See the My research section of math.stackexchange.com/questions/2749487/…. It shows the 4 continued fraction references that I have found helpful. As suggested by Will Jagy's comment, it is better to find and explore good continued fraction references, than to attempt to derive results yourself.
    – user2661923
    Sep 1 at 17:29
















Here, we ask that you show your efforts and thoughts. Do not merely ask us to do it for you.
– GEdgar
Aug 30 at 16:40




Here, we ask that you show your efforts and thoughts. Do not merely ask us to do it for you.
– GEdgar
Aug 30 at 16:40












What book or notes are you using? Both your questions are standard results, this one has a pretty long answer, not really suitable for online
– Will Jagy
Aug 30 at 16:45




What book or notes are you using? Both your questions are standard results, this one has a pretty long answer, not really suitable for online
– Will Jagy
Aug 30 at 16:45












@WillJagy Hi, I'm using following book link. Where can I find said results?
– MicroT
Aug 31 at 15:08






@WillJagy Hi, I'm using following book link. Where can I find said results?
– MicroT
Aug 31 at 15:08














@MicroT See the My research section of math.stackexchange.com/questions/2749487/…. It shows the 4 continued fraction references that I have found helpful. As suggested by Will Jagy's comment, it is better to find and explore good continued fraction references, than to attempt to derive results yourself.
– user2661923
Sep 1 at 17:29




@MicroT See the My research section of math.stackexchange.com/questions/2749487/…. It shows the 4 continued fraction references that I have found helpful. As suggested by Will Jagy's comment, it is better to find and explore good continued fraction references, than to attempt to derive results yourself.
– user2661923
Sep 1 at 17:29















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2899747%2fd-in-mathbbn-that-is-not-a-square-show-that-the-continued-fractions-for%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2899747%2fd-in-mathbbn-that-is-not-a-square-show-that-the-continued-fractions-for%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten