Chatbot
Ein Chatterbot, Chatbot oder kurz Bot ist ein textbasiertes Dialogsystem, welches das Chatten mit einem technischen System erlaubt. Er hat je einen Bereich zur Textein- und -ausgabe, über die sich in natürlicher Sprache mit dem dahinterstehenden System kommunizieren lässt. Chatbots können, müssen aber nicht in Verbindung mit einem Avatar benutzt werden. Technisch sind Bots näher mit einer Volltextsuchmaschine verwandt als mit künstlicher oder gar natürlicher Intelligenz. Mit der steigenden Computerleistung können Chatbot-Systeme allerdings immer schneller auf immer umfangreichere Datenbestände zugreifen und daher auch intelligente Dialoge für den Nutzer bieten. Solche Systeme werden auch als virtuelle persönliche Assistenten bezeichnet.
Es gibt auch Chatbots, die gar nicht erst versuchen, wie ein menschlicher Chatter zu wirken (daher keine Chatterbots), sondern ähnlich wie IRC-Dienste nur auf spezielle Befehle reagieren. Sie können als Schnittstelle zu Diensten außerhalb des Chats dienen, oder auch Funktionen nur innerhalb ihres Chatraums anbieten, z. B. neu hinzugekommene Chatter mit dem Witz des Tages begrüßen.
Heute wird meistens durch digitale Assistenten wie Google Assistant und Amazon Alexa, über Messenger-Apps wie Facebook Messenger oder WhatsApp oder aber über Organisationstools und Webseiten auf Chatbots zugegriffen[1][2].
Inhaltsverzeichnis
1 Geschichte
2 Funktionsweise
3 Einrichtung eines Chatbots
4 Multimediale Chatbots
5 Siehe auch
6 Weblinks
7 Einzelnachweise
Geschichte |
Als erster Chatbot der Geschichte gilt Eliza, eine erste Demonstration einer virtuellen Psychotherapeutin, die Joseph Weizenbaum in den Jahren 1964 bis 1966 programmierte.
Von 2001 bis 2015 wurde die Chatterbox Challenge[3] ausgerichtet, ein internationaler Wettbewerb, der den Chatbot des Jahres kürte.[4]
Funktionsweise |
Die meisten Chatbots greifen auf eine vorgefertigte Datenbank, die sog. Wissensdatenbank mit Antworten und Erkennungsmustern, zurück. Das Programm zerlegt die eingegebene Frage zuerst in Einzelteile und verarbeitet diese nach vorgegebenen Regeln. Dabei können Schreibweisen harmonisiert (Groß- und Kleinschreibung, Umlaute etc.), Satzzeichen interpretiert und Tippfehler ausgeglichen werden (Preprocessing). Im zweiten Schritt erfolgt dann die eigentliche Erkennung der Frage. Diese wird üblicherweise über Erkennungsmuster gelöst, manche Chatbots erlauben darüber hinaus die Verschachtelung verschiedener Mustererkennungen über sogenannte Makros. Wird eine zur Frage passende Antwort erkannt, kann diese noch angepasst werden (beispielsweise können skriptgesteuert berechnete Daten eingefügt werden – „In Ulm sind es heute 37 °C.“). Diesen Vorgang nennt man Postprocessing. Die daraus entstandene Antwort wird dann ausgegeben.
Moderne kommerzielle Chatbot-Programme erlauben darüber hinaus den direkten Zugriff auf die gesamte Verarbeitung über eingebaute Skriptsprachen und Programmierschnittstellen.
Einrichtung eines Chatbots |
Die Herausforderung bei der Programmierung eines Chatbots liegt in der sinnvollen Zusammenstellung der Erkennungen. Präzise Erkennungen für spezielle Fragen werden dabei ergänzt durch globale Erkennungen, die sich nur auf ein Wort beziehen und als Fallback dienen können (der Bot erkennt grob das Thema, aber nicht die genaue Frage). Manche Chatbot-Programme unterstützen die Entwicklung dabei über Priorisierungsränge, die einzelnen Antworten zuzuordnen sind.
Zur Programmierung eines Chatbots werden meist Entwicklungsumgebungen verwendet, die es erlauben, Fragen zu kategorisieren, Antworten zu priorisieren und Erkennungen zu verwalten[5][6]. Dabei lassen manche auch die Gestaltung eines Gesprächskontexts zu, der auf Erkennungen und möglichen Folgeerkennungen basiert („Möchten Sie mehr darüber erfahren?“).
Ist die Wissensbasis aufgebaut, wird der Bot in möglichst vielen Trainingsgesprächen mit Nutzern der Zielgruppe optimiert[7]. Fehlerhafte Erkennungen, Erkennungslücken und fehlende Antworten lassen sich so erkennen[8]. Meist bietet die Entwicklungsumgebung Analysewerkzeuge, um die Gesprächsprotokolle effizient auswerten zu können[9].
Ein guter Chatbot erreicht auf diese Weise eine mittlere Erkennungsrate von mehr als 70 % der Fragen. Er wird damit von den meisten Nutzern als unterhaltsamer Gegenpart akzeptiert.
Multimediale Chatbots |
Ursprünglich rein textbasiert, haben sich Chatbots durch immer stärker werdende Spracherkennung und Sprachsynthese weiterentwickelt und bieten neben reinen Textdialogen auch vollständig gesprochene Dialoge oder einen Mix aus beidem an. Zusätzlich können auch weitere Medien genutzt werden, beispielsweise Bilder und Videos. Gerade mit der starken Nutzung von mobilen Endgeräten (Smartphones, Wearables) wird diese Möglichkeit der Nutzung von Chatbots weiter zunehmen (Stand: Nov. 2016).[10] Mit fortschreitender Verbesserung sind Chatbots dabei nicht nur auf wenige eingegrenzte Themenbereiche (Wettervorhersage, Nachrichten usw.) begrenzt, sondern ermöglichen erweiterte Dialoge und Dienstleistungen für den Nutzer. Diese entwickeln sich so zu Intelligenten Persönlichen Assistenten.
Siehe auch |
- Turing-Test
- Social Bots in sozialen Medien
Weblinks |
Joseph Weizenbaum: A Computer Program For the Study of Natural Language Communication Between Man and Machine (1966) im Archiv der ACM
- Umfangreiches Chatbot-Verzeichnis, News und Diskussionen zum Thema Chatbots
- Seite des Chatbots Mitsuku, auf der ein Teil der Wissensdatenbank des Bots gezeigt wird.
Einzelnachweise |
↑ Darren Orf: Google Assistant Is a Mega AI Bot That Wants To Be Absoutely Everywhere. In: Gizmodo. (gizmodo.com [abgerufen am 19. Juni 2018]).
↑ The 8 best chatbots of 2016. In: VentureBeat. 21. Dezember 2016 (venturebeat.com [abgerufen am 19. Juni 2018]).
↑ ChatterBox Challenge. NationMaster.com, abgerufen am 16. November 2016 (englisch).
↑ Archivaufruf der Chatterbox Challenge Preisträger. Domain wurde in 2016 aufgegeben. (englisch).
↑ Botsociety: Design, preview and prototype your next chatbot or voice assistant. Abgerufen am 19. Juni 2018 (englisch).
↑ Botmock - Free chatbot conversation prototyping. Abgerufen am 19. Juni 2018 (amerikanisches Englisch).
↑ Watson Natural Language Understanding. 28. November 2016, abgerufen am 19. Juni 2018 (englisch).
↑ What are the most common words your bot receives or sends? In: Dashbot. 31. Oktober 2017 (dashbot.com [abgerufen am 19. Juni 2018]). @1@2Vorlage:Toter Link/blog.dashbot.com (Seite nicht mehr abrufbar, Suche in Webarchiven) Info: Der Link wurde automatisch als defekt markiert. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.
↑ Michael Yuan: Building Intelligent, Cross-platform, Messaging Bots. Addison Wesley, 2015, ISBN 978-0-13-465061-6 (google.co.in [abgerufen am 19. Juni 2018]).
↑ Thomas Kuhn: Sprachassistenten verändern unser Leben. WirtschaftsWoche, 28. Juli 2015, abgerufen am 16. November 2016.