Evaluating $intfrac{sin x}{sin (x-a)cdot sin (x-b)},mathrm dx$
$begingroup$
$$intfrac{sin x}{sin (x-a)cdot sin (x-b)},mathrm dx$$
My Try::
begin{align}
&displaystyle frac{1}{sin (b-a)}intfrac{sin {(x-a)-(x-b)}}{sin (x-a)cdot sin (x-b)}cdotsin x,mathrm dx\ =& frac{1}{sin (b-a)}int left{cot (x-b)-cot (x-a)right}cdot sin x ,mathrm dx
end{align}
Now how can I proceed after that?
calculus indefinite-integrals
$endgroup$
|
show 4 more comments
$begingroup$
$$intfrac{sin x}{sin (x-a)cdot sin (x-b)},mathrm dx$$
My Try::
begin{align}
&displaystyle frac{1}{sin (b-a)}intfrac{sin {(x-a)-(x-b)}}{sin (x-a)cdot sin (x-b)}cdotsin x,mathrm dx\ =& frac{1}{sin (b-a)}int left{cot (x-b)-cot (x-a)right}cdot sin x ,mathrm dx
end{align}
Now how can I proceed after that?
calculus indefinite-integrals
$endgroup$
$begingroup$
Please do not use titles consisting only of math expressions; these are discouraged for technical reasons -- see meta.
$endgroup$
– Lord_Farin
Sep 20 '13 at 19:27
$begingroup$
Sorry Lord_Farin , next time i will take care of it.
$endgroup$
– juantheron
Sep 20 '13 at 19:40
$begingroup$
@experimentX Please do not bump questions with such minuscule edits of disputable quality.
$endgroup$
– Lord_Farin
Sep 20 '13 at 20:32
1
$begingroup$
You may start from $sin(x)=sin(x-a+a).$
$endgroup$
– user64494
Sep 20 '13 at 20:33
$begingroup$
Step 1: Open those $sin(x-a)$ and $sin(x-b)$ to write everything in terms of $sin(x)$ and $cos(x)$.
$endgroup$
– Pp..
Feb 7 '15 at 1:34
|
show 4 more comments
$begingroup$
$$intfrac{sin x}{sin (x-a)cdot sin (x-b)},mathrm dx$$
My Try::
begin{align}
&displaystyle frac{1}{sin (b-a)}intfrac{sin {(x-a)-(x-b)}}{sin (x-a)cdot sin (x-b)}cdotsin x,mathrm dx\ =& frac{1}{sin (b-a)}int left{cot (x-b)-cot (x-a)right}cdot sin x ,mathrm dx
end{align}
Now how can I proceed after that?
calculus indefinite-integrals
$endgroup$
$$intfrac{sin x}{sin (x-a)cdot sin (x-b)},mathrm dx$$
My Try::
begin{align}
&displaystyle frac{1}{sin (b-a)}intfrac{sin {(x-a)-(x-b)}}{sin (x-a)cdot sin (x-b)}cdotsin x,mathrm dx\ =& frac{1}{sin (b-a)}int left{cot (x-b)-cot (x-a)right}cdot sin x ,mathrm dx
end{align}
Now how can I proceed after that?
calculus indefinite-integrals
calculus indefinite-integrals
edited Sep 20 '13 at 19:55
Santosh Linkha
9,64422852
9,64422852
asked Sep 20 '13 at 19:19
juantheronjuantheron
34.4k1150143
34.4k1150143
$begingroup$
Please do not use titles consisting only of math expressions; these are discouraged for technical reasons -- see meta.
$endgroup$
– Lord_Farin
Sep 20 '13 at 19:27
$begingroup$
Sorry Lord_Farin , next time i will take care of it.
$endgroup$
– juantheron
Sep 20 '13 at 19:40
$begingroup$
@experimentX Please do not bump questions with such minuscule edits of disputable quality.
$endgroup$
– Lord_Farin
Sep 20 '13 at 20:32
1
$begingroup$
You may start from $sin(x)=sin(x-a+a).$
$endgroup$
– user64494
Sep 20 '13 at 20:33
$begingroup$
Step 1: Open those $sin(x-a)$ and $sin(x-b)$ to write everything in terms of $sin(x)$ and $cos(x)$.
$endgroup$
– Pp..
Feb 7 '15 at 1:34
|
show 4 more comments
$begingroup$
Please do not use titles consisting only of math expressions; these are discouraged for technical reasons -- see meta.
$endgroup$
– Lord_Farin
Sep 20 '13 at 19:27
$begingroup$
Sorry Lord_Farin , next time i will take care of it.
$endgroup$
– juantheron
Sep 20 '13 at 19:40
$begingroup$
@experimentX Please do not bump questions with such minuscule edits of disputable quality.
$endgroup$
– Lord_Farin
Sep 20 '13 at 20:32
1
$begingroup$
You may start from $sin(x)=sin(x-a+a).$
$endgroup$
– user64494
Sep 20 '13 at 20:33
$begingroup$
Step 1: Open those $sin(x-a)$ and $sin(x-b)$ to write everything in terms of $sin(x)$ and $cos(x)$.
$endgroup$
– Pp..
Feb 7 '15 at 1:34
$begingroup$
Please do not use titles consisting only of math expressions; these are discouraged for technical reasons -- see meta.
$endgroup$
– Lord_Farin
Sep 20 '13 at 19:27
$begingroup$
Please do not use titles consisting only of math expressions; these are discouraged for technical reasons -- see meta.
$endgroup$
– Lord_Farin
Sep 20 '13 at 19:27
$begingroup$
Sorry Lord_Farin , next time i will take care of it.
$endgroup$
– juantheron
Sep 20 '13 at 19:40
$begingroup$
Sorry Lord_Farin , next time i will take care of it.
$endgroup$
– juantheron
Sep 20 '13 at 19:40
$begingroup$
@experimentX Please do not bump questions with such minuscule edits of disputable quality.
$endgroup$
– Lord_Farin
Sep 20 '13 at 20:32
$begingroup$
@experimentX Please do not bump questions with such minuscule edits of disputable quality.
$endgroup$
– Lord_Farin
Sep 20 '13 at 20:32
1
1
$begingroup$
You may start from $sin(x)=sin(x-a+a).$
$endgroup$
– user64494
Sep 20 '13 at 20:33
$begingroup$
You may start from $sin(x)=sin(x-a+a).$
$endgroup$
– user64494
Sep 20 '13 at 20:33
$begingroup$
Step 1: Open those $sin(x-a)$ and $sin(x-b)$ to write everything in terms of $sin(x)$ and $cos(x)$.
$endgroup$
– Pp..
Feb 7 '15 at 1:34
$begingroup$
Step 1: Open those $sin(x-a)$ and $sin(x-b)$ to write everything in terms of $sin(x)$ and $cos(x)$.
$endgroup$
– Pp..
Feb 7 '15 at 1:34
|
show 4 more comments
1 Answer
1
active
oldest
votes
$begingroup$
Wrong answer for now.
First let's rewrite:
$$frac{1}{sin(x-a)sin(x-b)}=frac{p}{sin(x-a)}+frac{q}{sin(x-b)} quad(1)$$
Now multiplying $(1)$ by $sin(x-a)$ followed by letting $x=a$ yields:
$$left(frac{1}{sin(x-b)}=p+qunderset{rightarrow 0}{frac{sin(x-a)}{sin(x-b)}}right)bigg|_{x=a}Rightarrow p=frac{1}{sin(a-b)}$$
Similarly to obtain q, multiply $(1)$ by $sin(x-b)$ and plugg $x=b$ gives:
$$left(frac{1}{sin(x-a)}=punderset{rightarrow 0}{frac{sin(x-b)}{sin(x-a)}}+qright)bigg|_{x=b}Rightarrow q=frac{1}{sin(b-a)}=-p$$
Back to the original integral, we have:
$$I=intfrac{sin x}{sin (x-a)cdot sin (x-b)}dx=frac{1}{sin(a-b)}left(intfrac{sin x}{sin (x-a)}dx-intfrac{sin x}{sin(x-b)}dxright)$$
Now, it's enough to solve only one of these integrals.
$$intfrac{sin x}{sin(x-t)}dx=intfrac{sin(x-t+t)}{sin (x-t)}dx=cos tintfrac{sin(x-t)}{sin(x-t)}dx+sin tintfrac{cos(x-t)}{sin(x-t)}dx=$$
$$=cos t cdot x +sin t cdot ln|sin(x-t)|+c$$
Thus replacing $t$ by $a$ and $b$ we get the answer to be:
$$I=frac{1}{sin(a-b)}left((cos a-cos b)x+sin a ln|sin(x-a)|-sin b ln|sin(x-b)|right)+C$$
$endgroup$
1
$begingroup$
Unfortunately,$$frac{1}{sinleft(a-bright)}left(frac{1}{sinleft(x-aright)}-frac{1}{sinleft(x-bright)}right)=frac{sinleft(x-bright)-sinleft(x-aright)}{sinleft(a-bright)sinleft(x-aright)sinleft(x-bright)}=frac{cosleft(x-frac{a+b}{2}right)}{cosfrac{a-b}{2}sinleft(x-aright)sinleft(x-bright)}notequivfrac{1}{sinleft(x-aright)sinleft(x-bright)}.$$
$endgroup$
– J.G.
Dec 20 '18 at 12:08
$begingroup$
This is quite weird, I don't see where is my error.
$endgroup$
– Zacky
Dec 20 '18 at 12:14
1
$begingroup$
Your error is assuming constant coefficients exist that get the job done in the first place.
$endgroup$
– J.G.
Dec 20 '18 at 12:48
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f499849%2fevaluating-int-frac-sin-x-sin-x-a-cdot-sin-x-b-mathrm-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Wrong answer for now.
First let's rewrite:
$$frac{1}{sin(x-a)sin(x-b)}=frac{p}{sin(x-a)}+frac{q}{sin(x-b)} quad(1)$$
Now multiplying $(1)$ by $sin(x-a)$ followed by letting $x=a$ yields:
$$left(frac{1}{sin(x-b)}=p+qunderset{rightarrow 0}{frac{sin(x-a)}{sin(x-b)}}right)bigg|_{x=a}Rightarrow p=frac{1}{sin(a-b)}$$
Similarly to obtain q, multiply $(1)$ by $sin(x-b)$ and plugg $x=b$ gives:
$$left(frac{1}{sin(x-a)}=punderset{rightarrow 0}{frac{sin(x-b)}{sin(x-a)}}+qright)bigg|_{x=b}Rightarrow q=frac{1}{sin(b-a)}=-p$$
Back to the original integral, we have:
$$I=intfrac{sin x}{sin (x-a)cdot sin (x-b)}dx=frac{1}{sin(a-b)}left(intfrac{sin x}{sin (x-a)}dx-intfrac{sin x}{sin(x-b)}dxright)$$
Now, it's enough to solve only one of these integrals.
$$intfrac{sin x}{sin(x-t)}dx=intfrac{sin(x-t+t)}{sin (x-t)}dx=cos tintfrac{sin(x-t)}{sin(x-t)}dx+sin tintfrac{cos(x-t)}{sin(x-t)}dx=$$
$$=cos t cdot x +sin t cdot ln|sin(x-t)|+c$$
Thus replacing $t$ by $a$ and $b$ we get the answer to be:
$$I=frac{1}{sin(a-b)}left((cos a-cos b)x+sin a ln|sin(x-a)|-sin b ln|sin(x-b)|right)+C$$
$endgroup$
1
$begingroup$
Unfortunately,$$frac{1}{sinleft(a-bright)}left(frac{1}{sinleft(x-aright)}-frac{1}{sinleft(x-bright)}right)=frac{sinleft(x-bright)-sinleft(x-aright)}{sinleft(a-bright)sinleft(x-aright)sinleft(x-bright)}=frac{cosleft(x-frac{a+b}{2}right)}{cosfrac{a-b}{2}sinleft(x-aright)sinleft(x-bright)}notequivfrac{1}{sinleft(x-aright)sinleft(x-bright)}.$$
$endgroup$
– J.G.
Dec 20 '18 at 12:08
$begingroup$
This is quite weird, I don't see where is my error.
$endgroup$
– Zacky
Dec 20 '18 at 12:14
1
$begingroup$
Your error is assuming constant coefficients exist that get the job done in the first place.
$endgroup$
– J.G.
Dec 20 '18 at 12:48
add a comment |
$begingroup$
Wrong answer for now.
First let's rewrite:
$$frac{1}{sin(x-a)sin(x-b)}=frac{p}{sin(x-a)}+frac{q}{sin(x-b)} quad(1)$$
Now multiplying $(1)$ by $sin(x-a)$ followed by letting $x=a$ yields:
$$left(frac{1}{sin(x-b)}=p+qunderset{rightarrow 0}{frac{sin(x-a)}{sin(x-b)}}right)bigg|_{x=a}Rightarrow p=frac{1}{sin(a-b)}$$
Similarly to obtain q, multiply $(1)$ by $sin(x-b)$ and plugg $x=b$ gives:
$$left(frac{1}{sin(x-a)}=punderset{rightarrow 0}{frac{sin(x-b)}{sin(x-a)}}+qright)bigg|_{x=b}Rightarrow q=frac{1}{sin(b-a)}=-p$$
Back to the original integral, we have:
$$I=intfrac{sin x}{sin (x-a)cdot sin (x-b)}dx=frac{1}{sin(a-b)}left(intfrac{sin x}{sin (x-a)}dx-intfrac{sin x}{sin(x-b)}dxright)$$
Now, it's enough to solve only one of these integrals.
$$intfrac{sin x}{sin(x-t)}dx=intfrac{sin(x-t+t)}{sin (x-t)}dx=cos tintfrac{sin(x-t)}{sin(x-t)}dx+sin tintfrac{cos(x-t)}{sin(x-t)}dx=$$
$$=cos t cdot x +sin t cdot ln|sin(x-t)|+c$$
Thus replacing $t$ by $a$ and $b$ we get the answer to be:
$$I=frac{1}{sin(a-b)}left((cos a-cos b)x+sin a ln|sin(x-a)|-sin b ln|sin(x-b)|right)+C$$
$endgroup$
1
$begingroup$
Unfortunately,$$frac{1}{sinleft(a-bright)}left(frac{1}{sinleft(x-aright)}-frac{1}{sinleft(x-bright)}right)=frac{sinleft(x-bright)-sinleft(x-aright)}{sinleft(a-bright)sinleft(x-aright)sinleft(x-bright)}=frac{cosleft(x-frac{a+b}{2}right)}{cosfrac{a-b}{2}sinleft(x-aright)sinleft(x-bright)}notequivfrac{1}{sinleft(x-aright)sinleft(x-bright)}.$$
$endgroup$
– J.G.
Dec 20 '18 at 12:08
$begingroup$
This is quite weird, I don't see where is my error.
$endgroup$
– Zacky
Dec 20 '18 at 12:14
1
$begingroup$
Your error is assuming constant coefficients exist that get the job done in the first place.
$endgroup$
– J.G.
Dec 20 '18 at 12:48
add a comment |
$begingroup$
Wrong answer for now.
First let's rewrite:
$$frac{1}{sin(x-a)sin(x-b)}=frac{p}{sin(x-a)}+frac{q}{sin(x-b)} quad(1)$$
Now multiplying $(1)$ by $sin(x-a)$ followed by letting $x=a$ yields:
$$left(frac{1}{sin(x-b)}=p+qunderset{rightarrow 0}{frac{sin(x-a)}{sin(x-b)}}right)bigg|_{x=a}Rightarrow p=frac{1}{sin(a-b)}$$
Similarly to obtain q, multiply $(1)$ by $sin(x-b)$ and plugg $x=b$ gives:
$$left(frac{1}{sin(x-a)}=punderset{rightarrow 0}{frac{sin(x-b)}{sin(x-a)}}+qright)bigg|_{x=b}Rightarrow q=frac{1}{sin(b-a)}=-p$$
Back to the original integral, we have:
$$I=intfrac{sin x}{sin (x-a)cdot sin (x-b)}dx=frac{1}{sin(a-b)}left(intfrac{sin x}{sin (x-a)}dx-intfrac{sin x}{sin(x-b)}dxright)$$
Now, it's enough to solve only one of these integrals.
$$intfrac{sin x}{sin(x-t)}dx=intfrac{sin(x-t+t)}{sin (x-t)}dx=cos tintfrac{sin(x-t)}{sin(x-t)}dx+sin tintfrac{cos(x-t)}{sin(x-t)}dx=$$
$$=cos t cdot x +sin t cdot ln|sin(x-t)|+c$$
Thus replacing $t$ by $a$ and $b$ we get the answer to be:
$$I=frac{1}{sin(a-b)}left((cos a-cos b)x+sin a ln|sin(x-a)|-sin b ln|sin(x-b)|right)+C$$
$endgroup$
Wrong answer for now.
First let's rewrite:
$$frac{1}{sin(x-a)sin(x-b)}=frac{p}{sin(x-a)}+frac{q}{sin(x-b)} quad(1)$$
Now multiplying $(1)$ by $sin(x-a)$ followed by letting $x=a$ yields:
$$left(frac{1}{sin(x-b)}=p+qunderset{rightarrow 0}{frac{sin(x-a)}{sin(x-b)}}right)bigg|_{x=a}Rightarrow p=frac{1}{sin(a-b)}$$
Similarly to obtain q, multiply $(1)$ by $sin(x-b)$ and plugg $x=b$ gives:
$$left(frac{1}{sin(x-a)}=punderset{rightarrow 0}{frac{sin(x-b)}{sin(x-a)}}+qright)bigg|_{x=b}Rightarrow q=frac{1}{sin(b-a)}=-p$$
Back to the original integral, we have:
$$I=intfrac{sin x}{sin (x-a)cdot sin (x-b)}dx=frac{1}{sin(a-b)}left(intfrac{sin x}{sin (x-a)}dx-intfrac{sin x}{sin(x-b)}dxright)$$
Now, it's enough to solve only one of these integrals.
$$intfrac{sin x}{sin(x-t)}dx=intfrac{sin(x-t+t)}{sin (x-t)}dx=cos tintfrac{sin(x-t)}{sin(x-t)}dx+sin tintfrac{cos(x-t)}{sin(x-t)}dx=$$
$$=cos t cdot x +sin t cdot ln|sin(x-t)|+c$$
Thus replacing $t$ by $a$ and $b$ we get the answer to be:
$$I=frac{1}{sin(a-b)}left((cos a-cos b)x+sin a ln|sin(x-a)|-sin b ln|sin(x-b)|right)+C$$
edited Dec 20 '18 at 13:14
answered Dec 20 '18 at 11:51
ZackyZacky
7,89511061
7,89511061
1
$begingroup$
Unfortunately,$$frac{1}{sinleft(a-bright)}left(frac{1}{sinleft(x-aright)}-frac{1}{sinleft(x-bright)}right)=frac{sinleft(x-bright)-sinleft(x-aright)}{sinleft(a-bright)sinleft(x-aright)sinleft(x-bright)}=frac{cosleft(x-frac{a+b}{2}right)}{cosfrac{a-b}{2}sinleft(x-aright)sinleft(x-bright)}notequivfrac{1}{sinleft(x-aright)sinleft(x-bright)}.$$
$endgroup$
– J.G.
Dec 20 '18 at 12:08
$begingroup$
This is quite weird, I don't see where is my error.
$endgroup$
– Zacky
Dec 20 '18 at 12:14
1
$begingroup$
Your error is assuming constant coefficients exist that get the job done in the first place.
$endgroup$
– J.G.
Dec 20 '18 at 12:48
add a comment |
1
$begingroup$
Unfortunately,$$frac{1}{sinleft(a-bright)}left(frac{1}{sinleft(x-aright)}-frac{1}{sinleft(x-bright)}right)=frac{sinleft(x-bright)-sinleft(x-aright)}{sinleft(a-bright)sinleft(x-aright)sinleft(x-bright)}=frac{cosleft(x-frac{a+b}{2}right)}{cosfrac{a-b}{2}sinleft(x-aright)sinleft(x-bright)}notequivfrac{1}{sinleft(x-aright)sinleft(x-bright)}.$$
$endgroup$
– J.G.
Dec 20 '18 at 12:08
$begingroup$
This is quite weird, I don't see where is my error.
$endgroup$
– Zacky
Dec 20 '18 at 12:14
1
$begingroup$
Your error is assuming constant coefficients exist that get the job done in the first place.
$endgroup$
– J.G.
Dec 20 '18 at 12:48
1
1
$begingroup$
Unfortunately,$$frac{1}{sinleft(a-bright)}left(frac{1}{sinleft(x-aright)}-frac{1}{sinleft(x-bright)}right)=frac{sinleft(x-bright)-sinleft(x-aright)}{sinleft(a-bright)sinleft(x-aright)sinleft(x-bright)}=frac{cosleft(x-frac{a+b}{2}right)}{cosfrac{a-b}{2}sinleft(x-aright)sinleft(x-bright)}notequivfrac{1}{sinleft(x-aright)sinleft(x-bright)}.$$
$endgroup$
– J.G.
Dec 20 '18 at 12:08
$begingroup$
Unfortunately,$$frac{1}{sinleft(a-bright)}left(frac{1}{sinleft(x-aright)}-frac{1}{sinleft(x-bright)}right)=frac{sinleft(x-bright)-sinleft(x-aright)}{sinleft(a-bright)sinleft(x-aright)sinleft(x-bright)}=frac{cosleft(x-frac{a+b}{2}right)}{cosfrac{a-b}{2}sinleft(x-aright)sinleft(x-bright)}notequivfrac{1}{sinleft(x-aright)sinleft(x-bright)}.$$
$endgroup$
– J.G.
Dec 20 '18 at 12:08
$begingroup$
This is quite weird, I don't see where is my error.
$endgroup$
– Zacky
Dec 20 '18 at 12:14
$begingroup$
This is quite weird, I don't see where is my error.
$endgroup$
– Zacky
Dec 20 '18 at 12:14
1
1
$begingroup$
Your error is assuming constant coefficients exist that get the job done in the first place.
$endgroup$
– J.G.
Dec 20 '18 at 12:48
$begingroup$
Your error is assuming constant coefficients exist that get the job done in the first place.
$endgroup$
– J.G.
Dec 20 '18 at 12:48
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f499849%2fevaluating-int-frac-sin-x-sin-x-a-cdot-sin-x-b-mathrm-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Please do not use titles consisting only of math expressions; these are discouraged for technical reasons -- see meta.
$endgroup$
– Lord_Farin
Sep 20 '13 at 19:27
$begingroup$
Sorry Lord_Farin , next time i will take care of it.
$endgroup$
– juantheron
Sep 20 '13 at 19:40
$begingroup$
@experimentX Please do not bump questions with such minuscule edits of disputable quality.
$endgroup$
– Lord_Farin
Sep 20 '13 at 20:32
1
$begingroup$
You may start from $sin(x)=sin(x-a+a).$
$endgroup$
– user64494
Sep 20 '13 at 20:33
$begingroup$
Step 1: Open those $sin(x-a)$ and $sin(x-b)$ to write everything in terms of $sin(x)$ and $cos(x)$.
$endgroup$
– Pp..
Feb 7 '15 at 1:34