Double Integral unequal after switching $dy$ and $dx$. Exact reasoning required












2












$begingroup$


I have worked out $int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(x)) dlambda (y)=-frac{pi}{4}$ and $int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(y)) dlambda (x)=frac{pi}{4}$



What should my exact reasoning be as to why the double integral does not exist according to $lambda^2$?



Should I argue along the lines of $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)$ not being well-defined as



$int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)=int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(x)) dlambda (y)=-frac{pi}{4}$



and



$int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)=int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(y)) dlambda (x)=frac{pi}{4}
$



But I am not sure on this argument.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    I have worked out $int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(x)) dlambda (y)=-frac{pi}{4}$ and $int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(y)) dlambda (x)=frac{pi}{4}$



    What should my exact reasoning be as to why the double integral does not exist according to $lambda^2$?



    Should I argue along the lines of $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)$ not being well-defined as



    $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)=int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(x)) dlambda (y)=-frac{pi}{4}$



    and



    $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)=int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(y)) dlambda (x)=frac{pi}{4}
    $



    But I am not sure on this argument.










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      I have worked out $int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(x)) dlambda (y)=-frac{pi}{4}$ and $int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(y)) dlambda (x)=frac{pi}{4}$



      What should my exact reasoning be as to why the double integral does not exist according to $lambda^2$?



      Should I argue along the lines of $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)$ not being well-defined as



      $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)=int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(x)) dlambda (y)=-frac{pi}{4}$



      and



      $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)=int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(y)) dlambda (x)=frac{pi}{4}
      $



      But I am not sure on this argument.










      share|cite|improve this question









      $endgroup$




      I have worked out $int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(x)) dlambda (y)=-frac{pi}{4}$ and $int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(y)) dlambda (x)=frac{pi}{4}$



      What should my exact reasoning be as to why the double integral does not exist according to $lambda^2$?



      Should I argue along the lines of $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)$ not being well-defined as



      $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)=int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(x)) dlambda (y)=-frac{pi}{4}$



      and



      $int_{[0,1]times[0,1]}frac{x^2-y^2}{(x^2+y^2)^2}dlambda^2(x,y)=int_{[0,1]}(int_{[0,1]}frac{x^2-y^2}{(x^2+y^2)^2} dlambda(y)) dlambda (x)=frac{pi}{4}
      $



      But I am not sure on this argument.







      real-analysis integration measure-theory multivariable-calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 18 '18 at 11:23









      SABOYSABOY

      656311




      656311






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          It's a direct application of Fubini: $fnotin mathcal L^1(Itimes I)$ because the iterated integrals are not equal. You can show this directly by using polar coordinates and noting that, if $E=left {(x,y):) 0le yle frac{1}{sqrt 3}xright },$ we have $ |f(x,y)|=frac{cos 2t}{r^{2}}ge frac{1}{2r^{2}}$ so $int|f|=int_E |f|+int_{E^c}|f|$ and since $int_E |f|=infty, fnotin L^1(Itimes I)$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045043%2fdouble-integral-unequal-after-switching-dy-and-dx-exact-reasoning-required%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            It's a direct application of Fubini: $fnotin mathcal L^1(Itimes I)$ because the iterated integrals are not equal. You can show this directly by using polar coordinates and noting that, if $E=left {(x,y):) 0le yle frac{1}{sqrt 3}xright },$ we have $ |f(x,y)|=frac{cos 2t}{r^{2}}ge frac{1}{2r^{2}}$ so $int|f|=int_E |f|+int_{E^c}|f|$ and since $int_E |f|=infty, fnotin L^1(Itimes I)$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              It's a direct application of Fubini: $fnotin mathcal L^1(Itimes I)$ because the iterated integrals are not equal. You can show this directly by using polar coordinates and noting that, if $E=left {(x,y):) 0le yle frac{1}{sqrt 3}xright },$ we have $ |f(x,y)|=frac{cos 2t}{r^{2}}ge frac{1}{2r^{2}}$ so $int|f|=int_E |f|+int_{E^c}|f|$ and since $int_E |f|=infty, fnotin L^1(Itimes I)$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                It's a direct application of Fubini: $fnotin mathcal L^1(Itimes I)$ because the iterated integrals are not equal. You can show this directly by using polar coordinates and noting that, if $E=left {(x,y):) 0le yle frac{1}{sqrt 3}xright },$ we have $ |f(x,y)|=frac{cos 2t}{r^{2}}ge frac{1}{2r^{2}}$ so $int|f|=int_E |f|+int_{E^c}|f|$ and since $int_E |f|=infty, fnotin L^1(Itimes I)$.






                share|cite|improve this answer









                $endgroup$



                It's a direct application of Fubini: $fnotin mathcal L^1(Itimes I)$ because the iterated integrals are not equal. You can show this directly by using polar coordinates and noting that, if $E=left {(x,y):) 0le yle frac{1}{sqrt 3}xright },$ we have $ |f(x,y)|=frac{cos 2t}{r^{2}}ge frac{1}{2r^{2}}$ so $int|f|=int_E |f|+int_{E^c}|f|$ and since $int_E |f|=infty, fnotin L^1(Itimes I)$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 18 '18 at 16:31









                MatematletaMatematleta

                11.5k2920




                11.5k2920






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045043%2fdouble-integral-unequal-after-switching-dy-and-dx-exact-reasoning-required%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten