How to prove that $sum_{i<j}(X_i-X_j)^2=nsum_{i=1}^{n}(X_i-bar{X})^2$












1












$begingroup$


In a example about U-statistics, $h(x_1,x_2)=frac 12(x_1-x_2)^2$, then
$$U_n=frac{2}{n(n-1)}sum_{i<j}frac{(X_i-X_j)^2}{2}=frac{1}{n-1}sum_{i=1}^{n}(X_i-bar{X})^2$$
I don't know how to prove it completely.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Please show us what you have tried so far.
    $endgroup$
    – Stockfish
    Dec 18 '18 at 11:58






  • 1




    $begingroup$
    I think the formula $sum_{i<j}(x_j+x_j)^2=(n-1)sum_{i=1}^{n}x_i$ will be help. But I don't know how to prove the above formula.
    $endgroup$
    – chole
    Dec 18 '18 at 12:14
















1












$begingroup$


In a example about U-statistics, $h(x_1,x_2)=frac 12(x_1-x_2)^2$, then
$$U_n=frac{2}{n(n-1)}sum_{i<j}frac{(X_i-X_j)^2}{2}=frac{1}{n-1}sum_{i=1}^{n}(X_i-bar{X})^2$$
I don't know how to prove it completely.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Please show us what you have tried so far.
    $endgroup$
    – Stockfish
    Dec 18 '18 at 11:58






  • 1




    $begingroup$
    I think the formula $sum_{i<j}(x_j+x_j)^2=(n-1)sum_{i=1}^{n}x_i$ will be help. But I don't know how to prove the above formula.
    $endgroup$
    – chole
    Dec 18 '18 at 12:14














1












1








1





$begingroup$


In a example about U-statistics, $h(x_1,x_2)=frac 12(x_1-x_2)^2$, then
$$U_n=frac{2}{n(n-1)}sum_{i<j}frac{(X_i-X_j)^2}{2}=frac{1}{n-1}sum_{i=1}^{n}(X_i-bar{X})^2$$
I don't know how to prove it completely.










share|cite|improve this question









$endgroup$




In a example about U-statistics, $h(x_1,x_2)=frac 12(x_1-x_2)^2$, then
$$U_n=frac{2}{n(n-1)}sum_{i<j}frac{(X_i-X_j)^2}{2}=frac{1}{n-1}sum_{i=1}^{n}(X_i-bar{X})^2$$
I don't know how to prove it completely.







statistics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 18 '18 at 11:47









cholechole

333




333












  • $begingroup$
    Please show us what you have tried so far.
    $endgroup$
    – Stockfish
    Dec 18 '18 at 11:58






  • 1




    $begingroup$
    I think the formula $sum_{i<j}(x_j+x_j)^2=(n-1)sum_{i=1}^{n}x_i$ will be help. But I don't know how to prove the above formula.
    $endgroup$
    – chole
    Dec 18 '18 at 12:14


















  • $begingroup$
    Please show us what you have tried so far.
    $endgroup$
    – Stockfish
    Dec 18 '18 at 11:58






  • 1




    $begingroup$
    I think the formula $sum_{i<j}(x_j+x_j)^2=(n-1)sum_{i=1}^{n}x_i$ will be help. But I don't know how to prove the above formula.
    $endgroup$
    – chole
    Dec 18 '18 at 12:14
















$begingroup$
Please show us what you have tried so far.
$endgroup$
– Stockfish
Dec 18 '18 at 11:58




$begingroup$
Please show us what you have tried so far.
$endgroup$
– Stockfish
Dec 18 '18 at 11:58




1




1




$begingroup$
I think the formula $sum_{i<j}(x_j+x_j)^2=(n-1)sum_{i=1}^{n}x_i$ will be help. But I don't know how to prove the above formula.
$endgroup$
– chole
Dec 18 '18 at 12:14




$begingroup$
I think the formula $sum_{i<j}(x_j+x_j)^2=(n-1)sum_{i=1}^{n}x_i$ will be help. But I don't know how to prove the above formula.
$endgroup$
– chole
Dec 18 '18 at 12:14










3 Answers
3






active

oldest

votes


















0












$begingroup$

Hint 1 :
$sum_{i<j}{(X_i-X_j)^2} = frac{1}{2}sum_{i}sum_{j}(X_i-X_j)^2$



Hint 2 : Add and subtract $bar{X} $ to simplify sum of squares.



You will arrive at your result.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    We know that (I found it here)
    begin{equation}
    left( sum_{n=1}^N a_n right)^2 = sum_{n=1}^N a_n^2 + 2 sum_{j=1}^{N}sum_{i=1}^{j-1} a_i a_j
    end{equation}

    So using the above identity



    begin{align}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    sum_{i=1}^{n}(X_i-frac{1}{n}sum_{j=1}^nX_j)^2\
    &=
    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j)^2 )\
    &=
    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k) )
    end{align}

    The last term above is independent of $i$ so it sums up $n$ times as
    begin{align}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{n}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
    end{align}

    which is also
    begin{align}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{1}{n}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
    end{align}

    which could also be written as
    begin{align}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    (1 + frac{1}{n})
    sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i=1}^{n}X_isum_{j=1}^nX_j) + frac{1}{n}( 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
    end{align}

    Rewriting differently we have
    begin{align}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    (1 + frac{1}{n})
    sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i,j}X_iX_j + frac{2}{n}sum_{i<j}X_iX_j
    end{align}

    The last two terms above are the same terms with missing terms. Notice that $sum_{i,j}X_iX_j$ spans all $i = 1 ldots n$ and $j = 1 ldots n$ but the other one spans an upper triangular version of it. This means that their difference will span the lower triangular version of it as
    begin{align}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    (1 + frac{1}{n})
    sum_{i=1}^{n}X_i^2 - frac{2}{n}sum_{igeq j}X_iX_j
    end{align}

    Factor $n$ on the right hand side, then divide by $n-1$ on both sides, then Multiply/divide by $2$ on the right hand side
    begin{align}
    frac{1}{n-1}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    frac{2}{n(n-1)}
    Big(
    frac{(n + 1)
    sum_{i=1}^{n}X_i^2 - 2sum_{igeq j}X_iX_j}{2}
    Big)
    end{align}

    Notice that $i geq j$ could be split to two summations
    begin{align}
    frac{1}{n-1}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    frac{2}{n(n-1)}
    Big(
    frac{(n + 1)
    sum_{i=1}^{n}X_i^2 - 2sum_{i = j}X_iX_j - 2sum_{i > j}X_iX_j}{2}
    Big)
    end{align}

    but when $i = j$, it is the same as a single summation, hence
    begin{align}
    frac{1}{n-1}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    frac{2}{n(n-1)}
    Big(
    frac{(n + 1)
    sum_{i=1}^{n}X_i^2 - 2sum_{i=1}^n X_i^2 - 2sum_{i > j}X_iX_j}{2}
    Big)
    end{align}

    which gives
    begin{align}
    frac{1}{n-1}
    sum_{i=1}^{n}(X_i-bar{X})^2
    &=
    frac{2}{n(n-1)}
    Big(
    frac{(n -1)
    sum_{i=1}^{n}X_i^2- 2sum_{i > j}X_iX_j}{2}
    Big)
    end{align}

    The numerator above is nothing other than $sum_{i<j} (X_i - X_j)^2 = sum_{i<j} X_i^2 - 2 sum_{i<j} X_iX_j + sum_{i<j} X_j^2$. It is easy to see the cross terms, however it is not as straightforward to see that we have $n-1$ terms of the form $X_i^2$. This should conclude
    begin{align}
    frac{1}{n-1}sum_{i=1}^{n}(X_i-bar{X})^2
    =
    frac{2}{n(n-1)}sum_{i<j}frac{(X_i-X_j)^2}{2}
    end{align}






    share|cite|improve this answer











    $endgroup$





















      0












      $begingroup$

      A one-line proof summary:$$sum_{i<j}(X_i-X_j)^2=frac{1}{2}sum_{ij}(X_i-X_j)^2=nsum_iX_i^2-sum_{ij}X_iX_j=nsum_i X_i(X_i-overline{X})=nsum_i(X_i-overline{X})^2.$$The first $=$ uses the fact that $(X_i-X_j)^2$ is $ileftrightarrow j$-symmetric and $0$ if $i=j$. The second $=$ expands the square and separates squares from cross terms. The third $=$ is a trivial rearrangement. The last $=$ uses $$X_i(X_i-overline{X})-(X_i-overline{X})^2=overline{X}(X_i-overline{X}),$$which becomes $0$ under $sum_i$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045070%2fhow-to-prove-that-sum-ijx-i-x-j2-n-sum-i-1nx-i-barx2%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        0












        $begingroup$

        Hint 1 :
        $sum_{i<j}{(X_i-X_j)^2} = frac{1}{2}sum_{i}sum_{j}(X_i-X_j)^2$



        Hint 2 : Add and subtract $bar{X} $ to simplify sum of squares.



        You will arrive at your result.






        share|cite|improve this answer









        $endgroup$


















          0












          $begingroup$

          Hint 1 :
          $sum_{i<j}{(X_i-X_j)^2} = frac{1}{2}sum_{i}sum_{j}(X_i-X_j)^2$



          Hint 2 : Add and subtract $bar{X} $ to simplify sum of squares.



          You will arrive at your result.






          share|cite|improve this answer









          $endgroup$
















            0












            0








            0





            $begingroup$

            Hint 1 :
            $sum_{i<j}{(X_i-X_j)^2} = frac{1}{2}sum_{i}sum_{j}(X_i-X_j)^2$



            Hint 2 : Add and subtract $bar{X} $ to simplify sum of squares.



            You will arrive at your result.






            share|cite|improve this answer









            $endgroup$



            Hint 1 :
            $sum_{i<j}{(X_i-X_j)^2} = frac{1}{2}sum_{i}sum_{j}(X_i-X_j)^2$



            Hint 2 : Add and subtract $bar{X} $ to simplify sum of squares.



            You will arrive at your result.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 18 '18 at 12:22









            Vishaal SudarsanVishaal Sudarsan

            995




            995























                0












                $begingroup$

                We know that (I found it here)
                begin{equation}
                left( sum_{n=1}^N a_n right)^2 = sum_{n=1}^N a_n^2 + 2 sum_{j=1}^{N}sum_{i=1}^{j-1} a_i a_j
                end{equation}

                So using the above identity



                begin{align}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                sum_{i=1}^{n}(X_i-frac{1}{n}sum_{j=1}^nX_j)^2\
                &=
                sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j)^2 )\
                &=
                sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k) )
                end{align}

                The last term above is independent of $i$ so it sums up $n$ times as
                begin{align}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{n}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                end{align}

                which is also
                begin{align}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{1}{n}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                end{align}

                which could also be written as
                begin{align}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                (1 + frac{1}{n})
                sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i=1}^{n}X_isum_{j=1}^nX_j) + frac{1}{n}( 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                end{align}

                Rewriting differently we have
                begin{align}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                (1 + frac{1}{n})
                sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i,j}X_iX_j + frac{2}{n}sum_{i<j}X_iX_j
                end{align}

                The last two terms above are the same terms with missing terms. Notice that $sum_{i,j}X_iX_j$ spans all $i = 1 ldots n$ and $j = 1 ldots n$ but the other one spans an upper triangular version of it. This means that their difference will span the lower triangular version of it as
                begin{align}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                (1 + frac{1}{n})
                sum_{i=1}^{n}X_i^2 - frac{2}{n}sum_{igeq j}X_iX_j
                end{align}

                Factor $n$ on the right hand side, then divide by $n-1$ on both sides, then Multiply/divide by $2$ on the right hand side
                begin{align}
                frac{1}{n-1}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                frac{2}{n(n-1)}
                Big(
                frac{(n + 1)
                sum_{i=1}^{n}X_i^2 - 2sum_{igeq j}X_iX_j}{2}
                Big)
                end{align}

                Notice that $i geq j$ could be split to two summations
                begin{align}
                frac{1}{n-1}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                frac{2}{n(n-1)}
                Big(
                frac{(n + 1)
                sum_{i=1}^{n}X_i^2 - 2sum_{i = j}X_iX_j - 2sum_{i > j}X_iX_j}{2}
                Big)
                end{align}

                but when $i = j$, it is the same as a single summation, hence
                begin{align}
                frac{1}{n-1}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                frac{2}{n(n-1)}
                Big(
                frac{(n + 1)
                sum_{i=1}^{n}X_i^2 - 2sum_{i=1}^n X_i^2 - 2sum_{i > j}X_iX_j}{2}
                Big)
                end{align}

                which gives
                begin{align}
                frac{1}{n-1}
                sum_{i=1}^{n}(X_i-bar{X})^2
                &=
                frac{2}{n(n-1)}
                Big(
                frac{(n -1)
                sum_{i=1}^{n}X_i^2- 2sum_{i > j}X_iX_j}{2}
                Big)
                end{align}

                The numerator above is nothing other than $sum_{i<j} (X_i - X_j)^2 = sum_{i<j} X_i^2 - 2 sum_{i<j} X_iX_j + sum_{i<j} X_j^2$. It is easy to see the cross terms, however it is not as straightforward to see that we have $n-1$ terms of the form $X_i^2$. This should conclude
                begin{align}
                frac{1}{n-1}sum_{i=1}^{n}(X_i-bar{X})^2
                =
                frac{2}{n(n-1)}sum_{i<j}frac{(X_i-X_j)^2}{2}
                end{align}






                share|cite|improve this answer











                $endgroup$


















                  0












                  $begingroup$

                  We know that (I found it here)
                  begin{equation}
                  left( sum_{n=1}^N a_n right)^2 = sum_{n=1}^N a_n^2 + 2 sum_{j=1}^{N}sum_{i=1}^{j-1} a_i a_j
                  end{equation}

                  So using the above identity



                  begin{align}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  sum_{i=1}^{n}(X_i-frac{1}{n}sum_{j=1}^nX_j)^2\
                  &=
                  sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j)^2 )\
                  &=
                  sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k) )
                  end{align}

                  The last term above is independent of $i$ so it sums up $n$ times as
                  begin{align}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{n}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                  end{align}

                  which is also
                  begin{align}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{1}{n}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                  end{align}

                  which could also be written as
                  begin{align}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  (1 + frac{1}{n})
                  sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i=1}^{n}X_isum_{j=1}^nX_j) + frac{1}{n}( 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                  end{align}

                  Rewriting differently we have
                  begin{align}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  (1 + frac{1}{n})
                  sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i,j}X_iX_j + frac{2}{n}sum_{i<j}X_iX_j
                  end{align}

                  The last two terms above are the same terms with missing terms. Notice that $sum_{i,j}X_iX_j$ spans all $i = 1 ldots n$ and $j = 1 ldots n$ but the other one spans an upper triangular version of it. This means that their difference will span the lower triangular version of it as
                  begin{align}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  (1 + frac{1}{n})
                  sum_{i=1}^{n}X_i^2 - frac{2}{n}sum_{igeq j}X_iX_j
                  end{align}

                  Factor $n$ on the right hand side, then divide by $n-1$ on both sides, then Multiply/divide by $2$ on the right hand side
                  begin{align}
                  frac{1}{n-1}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  frac{2}{n(n-1)}
                  Big(
                  frac{(n + 1)
                  sum_{i=1}^{n}X_i^2 - 2sum_{igeq j}X_iX_j}{2}
                  Big)
                  end{align}

                  Notice that $i geq j$ could be split to two summations
                  begin{align}
                  frac{1}{n-1}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  frac{2}{n(n-1)}
                  Big(
                  frac{(n + 1)
                  sum_{i=1}^{n}X_i^2 - 2sum_{i = j}X_iX_j - 2sum_{i > j}X_iX_j}{2}
                  Big)
                  end{align}

                  but when $i = j$, it is the same as a single summation, hence
                  begin{align}
                  frac{1}{n-1}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  frac{2}{n(n-1)}
                  Big(
                  frac{(n + 1)
                  sum_{i=1}^{n}X_i^2 - 2sum_{i=1}^n X_i^2 - 2sum_{i > j}X_iX_j}{2}
                  Big)
                  end{align}

                  which gives
                  begin{align}
                  frac{1}{n-1}
                  sum_{i=1}^{n}(X_i-bar{X})^2
                  &=
                  frac{2}{n(n-1)}
                  Big(
                  frac{(n -1)
                  sum_{i=1}^{n}X_i^2- 2sum_{i > j}X_iX_j}{2}
                  Big)
                  end{align}

                  The numerator above is nothing other than $sum_{i<j} (X_i - X_j)^2 = sum_{i<j} X_i^2 - 2 sum_{i<j} X_iX_j + sum_{i<j} X_j^2$. It is easy to see the cross terms, however it is not as straightforward to see that we have $n-1$ terms of the form $X_i^2$. This should conclude
                  begin{align}
                  frac{1}{n-1}sum_{i=1}^{n}(X_i-bar{X})^2
                  =
                  frac{2}{n(n-1)}sum_{i<j}frac{(X_i-X_j)^2}{2}
                  end{align}






                  share|cite|improve this answer











                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    We know that (I found it here)
                    begin{equation}
                    left( sum_{n=1}^N a_n right)^2 = sum_{n=1}^N a_n^2 + 2 sum_{j=1}^{N}sum_{i=1}^{j-1} a_i a_j
                    end{equation}

                    So using the above identity



                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    sum_{i=1}^{n}(X_i-frac{1}{n}sum_{j=1}^nX_j)^2\
                    &=
                    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j)^2 )\
                    &=
                    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k) )
                    end{align}

                    The last term above is independent of $i$ so it sums up $n$ times as
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{n}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                    end{align}

                    which is also
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{1}{n}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                    end{align}

                    which could also be written as
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    (1 + frac{1}{n})
                    sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i=1}^{n}X_isum_{j=1}^nX_j) + frac{1}{n}( 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                    end{align}

                    Rewriting differently we have
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    (1 + frac{1}{n})
                    sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i,j}X_iX_j + frac{2}{n}sum_{i<j}X_iX_j
                    end{align}

                    The last two terms above are the same terms with missing terms. Notice that $sum_{i,j}X_iX_j$ spans all $i = 1 ldots n$ and $j = 1 ldots n$ but the other one spans an upper triangular version of it. This means that their difference will span the lower triangular version of it as
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    (1 + frac{1}{n})
                    sum_{i=1}^{n}X_i^2 - frac{2}{n}sum_{igeq j}X_iX_j
                    end{align}

                    Factor $n$ on the right hand side, then divide by $n-1$ on both sides, then Multiply/divide by $2$ on the right hand side
                    begin{align}
                    frac{1}{n-1}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    frac{2}{n(n-1)}
                    Big(
                    frac{(n + 1)
                    sum_{i=1}^{n}X_i^2 - 2sum_{igeq j}X_iX_j}{2}
                    Big)
                    end{align}

                    Notice that $i geq j$ could be split to two summations
                    begin{align}
                    frac{1}{n-1}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    frac{2}{n(n-1)}
                    Big(
                    frac{(n + 1)
                    sum_{i=1}^{n}X_i^2 - 2sum_{i = j}X_iX_j - 2sum_{i > j}X_iX_j}{2}
                    Big)
                    end{align}

                    but when $i = j$, it is the same as a single summation, hence
                    begin{align}
                    frac{1}{n-1}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    frac{2}{n(n-1)}
                    Big(
                    frac{(n + 1)
                    sum_{i=1}^{n}X_i^2 - 2sum_{i=1}^n X_i^2 - 2sum_{i > j}X_iX_j}{2}
                    Big)
                    end{align}

                    which gives
                    begin{align}
                    frac{1}{n-1}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    frac{2}{n(n-1)}
                    Big(
                    frac{(n -1)
                    sum_{i=1}^{n}X_i^2- 2sum_{i > j}X_iX_j}{2}
                    Big)
                    end{align}

                    The numerator above is nothing other than $sum_{i<j} (X_i - X_j)^2 = sum_{i<j} X_i^2 - 2 sum_{i<j} X_iX_j + sum_{i<j} X_j^2$. It is easy to see the cross terms, however it is not as straightforward to see that we have $n-1$ terms of the form $X_i^2$. This should conclude
                    begin{align}
                    frac{1}{n-1}sum_{i=1}^{n}(X_i-bar{X})^2
                    =
                    frac{2}{n(n-1)}sum_{i<j}frac{(X_i-X_j)^2}{2}
                    end{align}






                    share|cite|improve this answer











                    $endgroup$



                    We know that (I found it here)
                    begin{equation}
                    left( sum_{n=1}^N a_n right)^2 = sum_{n=1}^N a_n^2 + 2 sum_{j=1}^{N}sum_{i=1}^{j-1} a_i a_j
                    end{equation}

                    So using the above identity



                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    sum_{i=1}^{n}(X_i-frac{1}{n}sum_{j=1}^nX_j)^2\
                    &=
                    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j)^2 )\
                    &=
                    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j + frac{1}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k) )
                    end{align}

                    The last term above is independent of $i$ so it sums up $n$ times as
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{n}{n^2}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                    end{align}

                    which is also
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    sum_{i=1}^{n}(X_i^2-frac{2}{n}X_isum_{j=1}^nX_j) + frac{1}{n}(sum_{j=1}^nX_j^2 + 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                    end{align}

                    which could also be written as
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    (1 + frac{1}{n})
                    sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i=1}^{n}X_isum_{j=1}^nX_j) + frac{1}{n}( 2sum_{j=1}^nsum_{k=1}^{j-1}X_jX_k)
                    end{align}

                    Rewriting differently we have
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    (1 + frac{1}{n})
                    sum_{i=1}^{n}X_i^2-frac{2}{n}sum_{i,j}X_iX_j + frac{2}{n}sum_{i<j}X_iX_j
                    end{align}

                    The last two terms above are the same terms with missing terms. Notice that $sum_{i,j}X_iX_j$ spans all $i = 1 ldots n$ and $j = 1 ldots n$ but the other one spans an upper triangular version of it. This means that their difference will span the lower triangular version of it as
                    begin{align}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    (1 + frac{1}{n})
                    sum_{i=1}^{n}X_i^2 - frac{2}{n}sum_{igeq j}X_iX_j
                    end{align}

                    Factor $n$ on the right hand side, then divide by $n-1$ on both sides, then Multiply/divide by $2$ on the right hand side
                    begin{align}
                    frac{1}{n-1}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    frac{2}{n(n-1)}
                    Big(
                    frac{(n + 1)
                    sum_{i=1}^{n}X_i^2 - 2sum_{igeq j}X_iX_j}{2}
                    Big)
                    end{align}

                    Notice that $i geq j$ could be split to two summations
                    begin{align}
                    frac{1}{n-1}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    frac{2}{n(n-1)}
                    Big(
                    frac{(n + 1)
                    sum_{i=1}^{n}X_i^2 - 2sum_{i = j}X_iX_j - 2sum_{i > j}X_iX_j}{2}
                    Big)
                    end{align}

                    but when $i = j$, it is the same as a single summation, hence
                    begin{align}
                    frac{1}{n-1}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    frac{2}{n(n-1)}
                    Big(
                    frac{(n + 1)
                    sum_{i=1}^{n}X_i^2 - 2sum_{i=1}^n X_i^2 - 2sum_{i > j}X_iX_j}{2}
                    Big)
                    end{align}

                    which gives
                    begin{align}
                    frac{1}{n-1}
                    sum_{i=1}^{n}(X_i-bar{X})^2
                    &=
                    frac{2}{n(n-1)}
                    Big(
                    frac{(n -1)
                    sum_{i=1}^{n}X_i^2- 2sum_{i > j}X_iX_j}{2}
                    Big)
                    end{align}

                    The numerator above is nothing other than $sum_{i<j} (X_i - X_j)^2 = sum_{i<j} X_i^2 - 2 sum_{i<j} X_iX_j + sum_{i<j} X_j^2$. It is easy to see the cross terms, however it is not as straightforward to see that we have $n-1$ terms of the form $X_i^2$. This should conclude
                    begin{align}
                    frac{1}{n-1}sum_{i=1}^{n}(X_i-bar{X})^2
                    =
                    frac{2}{n(n-1)}sum_{i<j}frac{(X_i-X_j)^2}{2}
                    end{align}







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Dec 18 '18 at 12:42

























                    answered Dec 18 '18 at 12:02









                    Ahmad BazziAhmad Bazzi

                    8,3622824




                    8,3622824























                        0












                        $begingroup$

                        A one-line proof summary:$$sum_{i<j}(X_i-X_j)^2=frac{1}{2}sum_{ij}(X_i-X_j)^2=nsum_iX_i^2-sum_{ij}X_iX_j=nsum_i X_i(X_i-overline{X})=nsum_i(X_i-overline{X})^2.$$The first $=$ uses the fact that $(X_i-X_j)^2$ is $ileftrightarrow j$-symmetric and $0$ if $i=j$. The second $=$ expands the square and separates squares from cross terms. The third $=$ is a trivial rearrangement. The last $=$ uses $$X_i(X_i-overline{X})-(X_i-overline{X})^2=overline{X}(X_i-overline{X}),$$which becomes $0$ under $sum_i$.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          A one-line proof summary:$$sum_{i<j}(X_i-X_j)^2=frac{1}{2}sum_{ij}(X_i-X_j)^2=nsum_iX_i^2-sum_{ij}X_iX_j=nsum_i X_i(X_i-overline{X})=nsum_i(X_i-overline{X})^2.$$The first $=$ uses the fact that $(X_i-X_j)^2$ is $ileftrightarrow j$-symmetric and $0$ if $i=j$. The second $=$ expands the square and separates squares from cross terms. The third $=$ is a trivial rearrangement. The last $=$ uses $$X_i(X_i-overline{X})-(X_i-overline{X})^2=overline{X}(X_i-overline{X}),$$which becomes $0$ under $sum_i$.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            A one-line proof summary:$$sum_{i<j}(X_i-X_j)^2=frac{1}{2}sum_{ij}(X_i-X_j)^2=nsum_iX_i^2-sum_{ij}X_iX_j=nsum_i X_i(X_i-overline{X})=nsum_i(X_i-overline{X})^2.$$The first $=$ uses the fact that $(X_i-X_j)^2$ is $ileftrightarrow j$-symmetric and $0$ if $i=j$. The second $=$ expands the square and separates squares from cross terms. The third $=$ is a trivial rearrangement. The last $=$ uses $$X_i(X_i-overline{X})-(X_i-overline{X})^2=overline{X}(X_i-overline{X}),$$which becomes $0$ under $sum_i$.






                            share|cite|improve this answer









                            $endgroup$



                            A one-line proof summary:$$sum_{i<j}(X_i-X_j)^2=frac{1}{2}sum_{ij}(X_i-X_j)^2=nsum_iX_i^2-sum_{ij}X_iX_j=nsum_i X_i(X_i-overline{X})=nsum_i(X_i-overline{X})^2.$$The first $=$ uses the fact that $(X_i-X_j)^2$ is $ileftrightarrow j$-symmetric and $0$ if $i=j$. The second $=$ expands the square and separates squares from cross terms. The third $=$ is a trivial rearrangement. The last $=$ uses $$X_i(X_i-overline{X})-(X_i-overline{X})^2=overline{X}(X_i-overline{X}),$$which becomes $0$ under $sum_i$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 18 '18 at 13:41









                            J.G.J.G.

                            30.3k23148




                            30.3k23148






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045070%2fhow-to-prove-that-sum-ijx-i-x-j2-n-sum-i-1nx-i-barx2%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Le Mesnil-Réaume

                                Ida-Boy-Ed-Garten

                                web3.py web3.isConnected() returns false always