Schur-convexity of multinomial distribution
up vote
0
down vote
favorite
Consider ${p_i in [0,c]}_i$, $c<1$, such that $sum_{i=1}^{k} p_i = P$ for some positive $k>2$ and constant $P < 1$. Let $(x_i in mathbb{N})_i$. Is
$$f(p_1,ldots,p_k)
= sum_{x_1,x_2,ldots,x_k=0}^{c} frac{p_1^{x_1}}{x_1} frac{p_2^{x_2}}{x_2!}
cdots
frac{p_k^{x_k}}{x_k!}
$$
Schur-concave in ${p_i}$?
The function is symmetric, but it is a bit hard to check the cond $partial f/partial p_i - partial f/partial p_j$. Any suggestion?
PS: The function is similar to the marginal of a Multinomial distribution.
statistics convex-analysis convex-optimization
add a comment |
up vote
0
down vote
favorite
Consider ${p_i in [0,c]}_i$, $c<1$, such that $sum_{i=1}^{k} p_i = P$ for some positive $k>2$ and constant $P < 1$. Let $(x_i in mathbb{N})_i$. Is
$$f(p_1,ldots,p_k)
= sum_{x_1,x_2,ldots,x_k=0}^{c} frac{p_1^{x_1}}{x_1} frac{p_2^{x_2}}{x_2!}
cdots
frac{p_k^{x_k}}{x_k!}
$$
Schur-concave in ${p_i}$?
The function is symmetric, but it is a bit hard to check the cond $partial f/partial p_i - partial f/partial p_j$. Any suggestion?
PS: The function is similar to the marginal of a Multinomial distribution.
statistics convex-analysis convex-optimization
What is the domain of $f$? Positive or also negative input?
– LinAlg
Nov 20 at 14:45
edited the question accordingly. ${p_i}'s$ are probability simplex.
– Jeff
Nov 20 at 14:57
then the answer is trivial, right?
– LinAlg
Nov 20 at 15:15
you were right. Actually, it should be Schur-concave, and also I had a summation, which was missing in the original question. Now, it is not trivial to me whether it is Schur-concave or not...
– Jeff
Nov 20 at 18:56
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Consider ${p_i in [0,c]}_i$, $c<1$, such that $sum_{i=1}^{k} p_i = P$ for some positive $k>2$ and constant $P < 1$. Let $(x_i in mathbb{N})_i$. Is
$$f(p_1,ldots,p_k)
= sum_{x_1,x_2,ldots,x_k=0}^{c} frac{p_1^{x_1}}{x_1} frac{p_2^{x_2}}{x_2!}
cdots
frac{p_k^{x_k}}{x_k!}
$$
Schur-concave in ${p_i}$?
The function is symmetric, but it is a bit hard to check the cond $partial f/partial p_i - partial f/partial p_j$. Any suggestion?
PS: The function is similar to the marginal of a Multinomial distribution.
statistics convex-analysis convex-optimization
Consider ${p_i in [0,c]}_i$, $c<1$, such that $sum_{i=1}^{k} p_i = P$ for some positive $k>2$ and constant $P < 1$. Let $(x_i in mathbb{N})_i$. Is
$$f(p_1,ldots,p_k)
= sum_{x_1,x_2,ldots,x_k=0}^{c} frac{p_1^{x_1}}{x_1} frac{p_2^{x_2}}{x_2!}
cdots
frac{p_k^{x_k}}{x_k!}
$$
Schur-concave in ${p_i}$?
The function is symmetric, but it is a bit hard to check the cond $partial f/partial p_i - partial f/partial p_j$. Any suggestion?
PS: The function is similar to the marginal of a Multinomial distribution.
statistics convex-analysis convex-optimization
statistics convex-analysis convex-optimization
edited Nov 20 at 18:54
asked Nov 20 at 14:20
Jeff
1838
1838
What is the domain of $f$? Positive or also negative input?
– LinAlg
Nov 20 at 14:45
edited the question accordingly. ${p_i}'s$ are probability simplex.
– Jeff
Nov 20 at 14:57
then the answer is trivial, right?
– LinAlg
Nov 20 at 15:15
you were right. Actually, it should be Schur-concave, and also I had a summation, which was missing in the original question. Now, it is not trivial to me whether it is Schur-concave or not...
– Jeff
Nov 20 at 18:56
add a comment |
What is the domain of $f$? Positive or also negative input?
– LinAlg
Nov 20 at 14:45
edited the question accordingly. ${p_i}'s$ are probability simplex.
– Jeff
Nov 20 at 14:57
then the answer is trivial, right?
– LinAlg
Nov 20 at 15:15
you were right. Actually, it should be Schur-concave, and also I had a summation, which was missing in the original question. Now, it is not trivial to me whether it is Schur-concave or not...
– Jeff
Nov 20 at 18:56
What is the domain of $f$? Positive or also negative input?
– LinAlg
Nov 20 at 14:45
What is the domain of $f$? Positive or also negative input?
– LinAlg
Nov 20 at 14:45
edited the question accordingly. ${p_i}'s$ are probability simplex.
– Jeff
Nov 20 at 14:57
edited the question accordingly. ${p_i}'s$ are probability simplex.
– Jeff
Nov 20 at 14:57
then the answer is trivial, right?
– LinAlg
Nov 20 at 15:15
then the answer is trivial, right?
– LinAlg
Nov 20 at 15:15
you were right. Actually, it should be Schur-concave, and also I had a summation, which was missing in the original question. Now, it is not trivial to me whether it is Schur-concave or not...
– Jeff
Nov 20 at 18:56
you were right. Actually, it should be Schur-concave, and also I had a summation, which was missing in the original question. Now, it is not trivial to me whether it is Schur-concave or not...
– Jeff
Nov 20 at 18:56
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006362%2fschur-convexity-of-multinomial-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What is the domain of $f$? Positive or also negative input?
– LinAlg
Nov 20 at 14:45
edited the question accordingly. ${p_i}'s$ are probability simplex.
– Jeff
Nov 20 at 14:57
then the answer is trivial, right?
– LinAlg
Nov 20 at 15:15
you were right. Actually, it should be Schur-concave, and also I had a summation, which was missing in the original question. Now, it is not trivial to me whether it is Schur-concave or not...
– Jeff
Nov 20 at 18:56