System of 3 equations problem
If
$$x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1$$
Then how much is
$$x^4+y^4+z^4$$
So what I'm pretty sure about, this shouldn't be solved for $x$,$y$, and $z$, but I should try to make $x^4+y^4+z^4$ from these equations.
I did this:
$(x^2+y^2+z^2)^2=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2$
And from here I can see:
$x^4+y^4+z^4=1-2(x^2y^2+x^2z^2+y^2z^2)$
But I'm missing $(x^2y^2+x^2z^2+y^2z^2)$
I tried finding $(x+y+z)^2$ and other combinations of squaring, tried multiplying some of these, but still couldn't find what I needed.
I'm in high school so try and do this for my level of knowledge, with at least a similar way to mine
algebra-precalculus systems-of-equations
add a comment |
If
$$x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1$$
Then how much is
$$x^4+y^4+z^4$$
So what I'm pretty sure about, this shouldn't be solved for $x$,$y$, and $z$, but I should try to make $x^4+y^4+z^4$ from these equations.
I did this:
$(x^2+y^2+z^2)^2=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2$
And from here I can see:
$x^4+y^4+z^4=1-2(x^2y^2+x^2z^2+y^2z^2)$
But I'm missing $(x^2y^2+x^2z^2+y^2z^2)$
I tried finding $(x+y+z)^2$ and other combinations of squaring, tried multiplying some of these, but still couldn't find what I needed.
I'm in high school so try and do this for my level of knowledge, with at least a similar way to mine
algebra-precalculus systems-of-equations
add a comment |
If
$$x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1$$
Then how much is
$$x^4+y^4+z^4$$
So what I'm pretty sure about, this shouldn't be solved for $x$,$y$, and $z$, but I should try to make $x^4+y^4+z^4$ from these equations.
I did this:
$(x^2+y^2+z^2)^2=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2$
And from here I can see:
$x^4+y^4+z^4=1-2(x^2y^2+x^2z^2+y^2z^2)$
But I'm missing $(x^2y^2+x^2z^2+y^2z^2)$
I tried finding $(x+y+z)^2$ and other combinations of squaring, tried multiplying some of these, but still couldn't find what I needed.
I'm in high school so try and do this for my level of knowledge, with at least a similar way to mine
algebra-precalculus systems-of-equations
If
$$x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1$$
Then how much is
$$x^4+y^4+z^4$$
So what I'm pretty sure about, this shouldn't be solved for $x$,$y$, and $z$, but I should try to make $x^4+y^4+z^4$ from these equations.
I did this:
$(x^2+y^2+z^2)^2=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2$
And from here I can see:
$x^4+y^4+z^4=1-2(x^2y^2+x^2z^2+y^2z^2)$
But I'm missing $(x^2y^2+x^2z^2+y^2z^2)$
I tried finding $(x+y+z)^2$ and other combinations of squaring, tried multiplying some of these, but still couldn't find what I needed.
I'm in high school so try and do this for my level of knowledge, with at least a similar way to mine
algebra-precalculus systems-of-equations
algebra-precalculus systems-of-equations
edited Nov 27 at 11:30
asked Nov 27 at 11:18
Aleksa
33612
33612
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Hint:
$$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$
$$(x+y+z)^2=?$$
$$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$
See also: en.wikipedia.org/wiki/Newton%27s_identities
– lab bhattacharjee
Nov 27 at 11:35
add a comment |
Alternativley, working with trinomials is cumbersome, so make them binomials:
$$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
$(1)^2-(2)$:
$$2xy=2z^2-2z-frac12$$
$(1)^3-(1)$:
$$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
So:
$$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
$(1)^4$:
$$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$
Plugging $z=frac12$:
$$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
Plugging $z=-frac12$:
$$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015661%2fsystem-of-3-equations-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint:
$$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$
$$(x+y+z)^2=?$$
$$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$
See also: en.wikipedia.org/wiki/Newton%27s_identities
– lab bhattacharjee
Nov 27 at 11:35
add a comment |
Hint:
$$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$
$$(x+y+z)^2=?$$
$$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$
See also: en.wikipedia.org/wiki/Newton%27s_identities
– lab bhattacharjee
Nov 27 at 11:35
add a comment |
Hint:
$$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$
$$(x+y+z)^2=?$$
$$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$
Hint:
$$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$
$$(x+y+z)^2=?$$
$$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$
answered Nov 27 at 11:32
lab bhattacharjee
223k15156274
223k15156274
See also: en.wikipedia.org/wiki/Newton%27s_identities
– lab bhattacharjee
Nov 27 at 11:35
add a comment |
See also: en.wikipedia.org/wiki/Newton%27s_identities
– lab bhattacharjee
Nov 27 at 11:35
See also: en.wikipedia.org/wiki/Newton%27s_identities
– lab bhattacharjee
Nov 27 at 11:35
See also: en.wikipedia.org/wiki/Newton%27s_identities
– lab bhattacharjee
Nov 27 at 11:35
add a comment |
Alternativley, working with trinomials is cumbersome, so make them binomials:
$$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
$(1)^2-(2)$:
$$2xy=2z^2-2z-frac12$$
$(1)^3-(1)$:
$$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
So:
$$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
$(1)^4$:
$$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$
Plugging $z=frac12$:
$$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
Plugging $z=-frac12$:
$$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$
add a comment |
Alternativley, working with trinomials is cumbersome, so make them binomials:
$$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
$(1)^2-(2)$:
$$2xy=2z^2-2z-frac12$$
$(1)^3-(1)$:
$$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
So:
$$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
$(1)^4$:
$$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$
Plugging $z=frac12$:
$$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
Plugging $z=-frac12$:
$$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$
add a comment |
Alternativley, working with trinomials is cumbersome, so make them binomials:
$$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
$(1)^2-(2)$:
$$2xy=2z^2-2z-frac12$$
$(1)^3-(1)$:
$$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
So:
$$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
$(1)^4$:
$$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$
Plugging $z=frac12$:
$$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
Plugging $z=-frac12$:
$$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$
Alternativley, working with trinomials is cumbersome, so make them binomials:
$$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
$(1)^2-(2)$:
$$2xy=2z^2-2z-frac12$$
$(1)^3-(1)$:
$$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
So:
$$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
$(1)^4$:
$$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$
Plugging $z=frac12$:
$$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
Plugging $z=-frac12$:
$$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$
answered Nov 27 at 14:36
farruhota
19.2k2736
19.2k2736
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015661%2fsystem-of-3-equations-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown