System of 3 equations problem












1















If
$$x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1$$
Then how much is
$$x^4+y^4+z^4$$




So what I'm pretty sure about, this shouldn't be solved for $x$,$y$, and $z$, but I should try to make $x^4+y^4+z^4$ from these equations.



I did this:



$(x^2+y^2+z^2)^2=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2$



And from here I can see:



$x^4+y^4+z^4=1-2(x^2y^2+x^2z^2+y^2z^2)$



But I'm missing $(x^2y^2+x^2z^2+y^2z^2)$



I tried finding $(x+y+z)^2$ and other combinations of squaring, tried multiplying some of these, but still couldn't find what I needed.



I'm in high school so try and do this for my level of knowledge, with at least a similar way to mine










share|cite|improve this question





























    1















    If
    $$x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1$$
    Then how much is
    $$x^4+y^4+z^4$$




    So what I'm pretty sure about, this shouldn't be solved for $x$,$y$, and $z$, but I should try to make $x^4+y^4+z^4$ from these equations.



    I did this:



    $(x^2+y^2+z^2)^2=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2$



    And from here I can see:



    $x^4+y^4+z^4=1-2(x^2y^2+x^2z^2+y^2z^2)$



    But I'm missing $(x^2y^2+x^2z^2+y^2z^2)$



    I tried finding $(x+y+z)^2$ and other combinations of squaring, tried multiplying some of these, but still couldn't find what I needed.



    I'm in high school so try and do this for my level of knowledge, with at least a similar way to mine










    share|cite|improve this question



























      1












      1








      1


      1






      If
      $$x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1$$
      Then how much is
      $$x^4+y^4+z^4$$




      So what I'm pretty sure about, this shouldn't be solved for $x$,$y$, and $z$, but I should try to make $x^4+y^4+z^4$ from these equations.



      I did this:



      $(x^2+y^2+z^2)^2=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2$



      And from here I can see:



      $x^4+y^4+z^4=1-2(x^2y^2+x^2z^2+y^2z^2)$



      But I'm missing $(x^2y^2+x^2z^2+y^2z^2)$



      I tried finding $(x+y+z)^2$ and other combinations of squaring, tried multiplying some of these, but still couldn't find what I needed.



      I'm in high school so try and do this for my level of knowledge, with at least a similar way to mine










      share|cite|improve this question
















      If
      $$x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1$$
      Then how much is
      $$x^4+y^4+z^4$$




      So what I'm pretty sure about, this shouldn't be solved for $x$,$y$, and $z$, but I should try to make $x^4+y^4+z^4$ from these equations.



      I did this:



      $(x^2+y^2+z^2)^2=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2$



      And from here I can see:



      $x^4+y^4+z^4=1-2(x^2y^2+x^2z^2+y^2z^2)$



      But I'm missing $(x^2y^2+x^2z^2+y^2z^2)$



      I tried finding $(x+y+z)^2$ and other combinations of squaring, tried multiplying some of these, but still couldn't find what I needed.



      I'm in high school so try and do this for my level of knowledge, with at least a similar way to mine







      algebra-precalculus systems-of-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 27 at 11:30

























      asked Nov 27 at 11:18









      Aleksa

      33612




      33612






















          2 Answers
          2






          active

          oldest

          votes


















          3














          Hint:



          $$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$



          $$(x+y+z)^2=?$$



          $$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$






          share|cite|improve this answer





















          • See also: en.wikipedia.org/wiki/Newton%27s_identities
            – lab bhattacharjee
            Nov 27 at 11:35



















          0














          Alternativley, working with trinomials is cumbersome, so make them binomials:
          $$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
          $(1)^2-(2)$:
          $$2xy=2z^2-2z-frac12$$
          $(1)^3-(1)$:
          $$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
          So:
          $$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
          $(1)^4$:
          $$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
          x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
          x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$

          Plugging $z=frac12$:
          $$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
          Plugging $z=-frac12$:
          $$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015661%2fsystem-of-3-equations-problem%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3














            Hint:



            $$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$



            $$(x+y+z)^2=?$$



            $$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$






            share|cite|improve this answer





















            • See also: en.wikipedia.org/wiki/Newton%27s_identities
              – lab bhattacharjee
              Nov 27 at 11:35
















            3














            Hint:



            $$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$



            $$(x+y+z)^2=?$$



            $$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$






            share|cite|improve this answer





















            • See also: en.wikipedia.org/wiki/Newton%27s_identities
              – lab bhattacharjee
              Nov 27 at 11:35














            3












            3








            3






            Hint:



            $$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$



            $$(x+y+z)^2=?$$



            $$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$






            share|cite|improve this answer












            Hint:



            $$(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)$$



            $$(x+y+z)^2=?$$



            $$x^3+y^3+z^3-3xyz=(x+y+z)((x^2+y^2+z^2-(xy+yz+zx))$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 27 at 11:32









            lab bhattacharjee

            223k15156274




            223k15156274












            • See also: en.wikipedia.org/wiki/Newton%27s_identities
              – lab bhattacharjee
              Nov 27 at 11:35


















            • See also: en.wikipedia.org/wiki/Newton%27s_identities
              – lab bhattacharjee
              Nov 27 at 11:35
















            See also: en.wikipedia.org/wiki/Newton%27s_identities
            – lab bhattacharjee
            Nov 27 at 11:35




            See also: en.wikipedia.org/wiki/Newton%27s_identities
            – lab bhattacharjee
            Nov 27 at 11:35











            0














            Alternativley, working with trinomials is cumbersome, so make them binomials:
            $$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
            $(1)^2-(2)$:
            $$2xy=2z^2-2z-frac12$$
            $(1)^3-(1)$:
            $$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
            So:
            $$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
            $(1)^4$:
            $$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
            x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
            x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$

            Plugging $z=frac12$:
            $$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
            Plugging $z=-frac12$:
            $$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$






            share|cite|improve this answer


























              0














              Alternativley, working with trinomials is cumbersome, so make them binomials:
              $$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
              $(1)^2-(2)$:
              $$2xy=2z^2-2z-frac12$$
              $(1)^3-(1)$:
              $$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
              So:
              $$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
              $(1)^4$:
              $$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
              x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
              x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$

              Plugging $z=frac12$:
              $$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
              Plugging $z=-frac12$:
              $$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$






              share|cite|improve this answer
























                0












                0








                0






                Alternativley, working with trinomials is cumbersome, so make them binomials:
                $$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
                $(1)^2-(2)$:
                $$2xy=2z^2-2z-frac12$$
                $(1)^3-(1)$:
                $$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
                So:
                $$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
                $(1)^4$:
                $$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
                x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
                x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$

                Plugging $z=frac12$:
                $$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
                Plugging $z=-frac12$:
                $$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$






                share|cite|improve this answer












                Alternativley, working with trinomials is cumbersome, so make them binomials:
                $$begin{cases}x+y+z=1\x^2+y^2+z^2={3over2}\x^3+y^3+z^3=1end{cases} Rightarrow begin{cases}x+y=1-z\x^2+y^2={3over2}-z^2\x^3+y^3=1-z^3end{cases}.$$
                $(1)^2-(2)$:
                $$2xy=2z^2-2z-frac12$$
                $(1)^3-(1)$:
                $$3xy(x+y)=3z(z-1) Rightarrow 3xy(1-z)=3z(z-1) Rightarrow xy=-z$$
                So:
                $$-2z=2z^2-2z-frac12 Rightarrow z=pm frac12.$$
                $(1)^4$:
                $$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4 Rightarrow \
                x^4+y^4=(x+y)^4-4xy(x^2+y^2)-6(xy)^2 Rightarrow \
                x^4+y^4+z^4=(1-z)^4-4(-z)(frac32-z^2)-6(-z)^2+z^4.$$

                Plugging $z=frac12$:
                $$x^4+y^4+z^4=frac1{16}+frac52-frac32+frac1{16}=frac98.$$
                Plugging $z=-frac12$:
                $$x^4+y^4+z^4=frac{81}{16}-frac52-frac32+frac1{16}=frac98.$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 27 at 14:36









                farruhota

                19.2k2736




                19.2k2736






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015661%2fsystem-of-3-equations-problem%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten