Integrate: $int_{-infty}^infty exp(-||vec x||^2) ||vec x||^{-m}mathrm{d}vec{x}$
$begingroup$
Let $m,n$ be two positive integers with $0 < m < n$.
Can we integrate this:
$$I = int_{-infty}^infty mathrm{d}x_1 dots int_{-infty}^infty mathrm{d}x_n left(sum_{i=1}^n x_i^2right)^{-m/2} expleft(-sum_{i=1}^n x_i^2right)$$
If a closed analytical expression is not possible, what I really need is to evaluate a large deviation limit of the form:
$$lim_{nrightarrowinfty} frac{1}{n} log I$$
where it is assumed that the ratio $m/n$ remains fixed.
Note that $I$ resembles a negative moment of the radious of a multivariate Gaussian.
I asked a very similar question here: Integrate: $int_0^1 ||vec x||^{-m}mathrm{d}vec{x}$. But note that this integral has different limits and a decaying quadratic exponential. Maybe I have better luck with this variant ;)
normal-distribution large-deviation-theory
$endgroup$
add a comment |
$begingroup$
Let $m,n$ be two positive integers with $0 < m < n$.
Can we integrate this:
$$I = int_{-infty}^infty mathrm{d}x_1 dots int_{-infty}^infty mathrm{d}x_n left(sum_{i=1}^n x_i^2right)^{-m/2} expleft(-sum_{i=1}^n x_i^2right)$$
If a closed analytical expression is not possible, what I really need is to evaluate a large deviation limit of the form:
$$lim_{nrightarrowinfty} frac{1}{n} log I$$
where it is assumed that the ratio $m/n$ remains fixed.
Note that $I$ resembles a negative moment of the radious of a multivariate Gaussian.
I asked a very similar question here: Integrate: $int_0^1 ||vec x||^{-m}mathrm{d}vec{x}$. But note that this integral has different limits and a decaying quadratic exponential. Maybe I have better luck with this variant ;)
normal-distribution large-deviation-theory
$endgroup$
add a comment |
$begingroup$
Let $m,n$ be two positive integers with $0 < m < n$.
Can we integrate this:
$$I = int_{-infty}^infty mathrm{d}x_1 dots int_{-infty}^infty mathrm{d}x_n left(sum_{i=1}^n x_i^2right)^{-m/2} expleft(-sum_{i=1}^n x_i^2right)$$
If a closed analytical expression is not possible, what I really need is to evaluate a large deviation limit of the form:
$$lim_{nrightarrowinfty} frac{1}{n} log I$$
where it is assumed that the ratio $m/n$ remains fixed.
Note that $I$ resembles a negative moment of the radious of a multivariate Gaussian.
I asked a very similar question here: Integrate: $int_0^1 ||vec x||^{-m}mathrm{d}vec{x}$. But note that this integral has different limits and a decaying quadratic exponential. Maybe I have better luck with this variant ;)
normal-distribution large-deviation-theory
$endgroup$
Let $m,n$ be two positive integers with $0 < m < n$.
Can we integrate this:
$$I = int_{-infty}^infty mathrm{d}x_1 dots int_{-infty}^infty mathrm{d}x_n left(sum_{i=1}^n x_i^2right)^{-m/2} expleft(-sum_{i=1}^n x_i^2right)$$
If a closed analytical expression is not possible, what I really need is to evaluate a large deviation limit of the form:
$$lim_{nrightarrowinfty} frac{1}{n} log I$$
where it is assumed that the ratio $m/n$ remains fixed.
Note that $I$ resembles a negative moment of the radious of a multivariate Gaussian.
I asked a very similar question here: Integrate: $int_0^1 ||vec x||^{-m}mathrm{d}vec{x}$. But note that this integral has different limits and a decaying quadratic exponential. Maybe I have better luck with this variant ;)
normal-distribution large-deviation-theory
normal-distribution large-deviation-theory
edited Dec 6 '18 at 19:24
becko
asked Dec 6 '18 at 19:20
beckobecko
2,35431942
2,35431942
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Consider the homomorphism $x mapsto left( |x|, dfrac{x}{|x|} right)$ between $mathbf{R}^d setminus {0}$ and $(0, infty) times mathbf{S}_{d-1}.$ By the change of measures formula, the integral becomes
$$begin{align*}
intlimits_0^infty dr intlimits_{mathbf{S}_{d-1}} dsigma_d e^{-r^2}r^{-m} r^{d-1} &= sigma_{d-1}(mathbf{S}_{d-1}) intlimits_{0}^infty dr e^{-r^2} r^{d-m-1} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} intlimits_0^infty dr e^{-r} r^{frac{d-m-2}{2}} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} Gammaleft(dfrac{d-m}{2}right). square
end{align*}$$
$endgroup$
$begingroup$
Thanks, but the notation is a bit obscure to me. This is the same as what I got, right?
$endgroup$
– becko
Dec 6 '18 at 20:40
$begingroup$
Yours is wrong, I think. To begin with, $N = d$ and $M = m,$ and in the integral you made the change of variables $u = r^2,$ so that $u' = 2r$ and then $int e^{-r^2} r^alpha dr = dfrac{1}{2}int e^{-u} u^{frac{alpha - 1}{2}} du.$ I think you factored out a $2^{frac{d - m}{2}-1}$ wrongly.
$endgroup$
– Will M.
Dec 7 '18 at 1:54
$begingroup$
I see what's wrong. In the original question the exponent was not divided by 2, but in my answer for some reason I divided by 2. If you correct for that we are getting equivalent results.
$endgroup$
– becko
Dec 7 '18 at 15:33
add a comment |
$begingroup$
Introduce the spherical coordinates $r, theta, xi_1, ldots, xi_{N - 2}$,
$$ x_1 = r cos (xi_1), quad x_2 = r sin (xi_1) cos (xi_2), quad
ldots, quad x_N = r sin (xi_1) ldots sin (xi_{N - 2}) sin
(theta) $$
where $0 leqslant xi_i leqslant pi$, $0 leqslant theta leqslant 2 pi$
and $0 leqslant r < infty$. The volume element is given by $mathrm d x_1
ldots mathrm d x_N = r^{N - 1} mathrm d r mathrm d sigma$, where $mathrm d
sigma$ is the unit-sphere surface element,
$$mathrm d sigma = sin^{N - 2} (xi_1) ldots sin (xi_{n - 2}) mathrm d theta
mathrm d xi_1 ldots mathrm d xi_{N - 2}$$
It follows that:
$$begin{eqnarray*}
I & = & int_{- infty}^{infty} | {vec x} |^{- M} mathrm e^{- |
{vec x} |^2 / 2} mathrm d vec x\
& = & left( int_0^{infty} r^{N - M - 1} mathrm e^{- r^2/2}
mathrm d r right) left( int_{mathcal{S}} mathrm d sigma right)\
& = & 2^{(N - M) / 2 - 1} Gamma left( frac{N - M}{2}
right) frac{2 pi^{N / 2}}{Gamma (N / 2)}
end{eqnarray*}$$
where $mathcal S$ is the unit sphere.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028920%2fintegrate-int-infty-infty-exp-vec-x2-vec-x-m-mathrmd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider the homomorphism $x mapsto left( |x|, dfrac{x}{|x|} right)$ between $mathbf{R}^d setminus {0}$ and $(0, infty) times mathbf{S}_{d-1}.$ By the change of measures formula, the integral becomes
$$begin{align*}
intlimits_0^infty dr intlimits_{mathbf{S}_{d-1}} dsigma_d e^{-r^2}r^{-m} r^{d-1} &= sigma_{d-1}(mathbf{S}_{d-1}) intlimits_{0}^infty dr e^{-r^2} r^{d-m-1} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} intlimits_0^infty dr e^{-r} r^{frac{d-m-2}{2}} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} Gammaleft(dfrac{d-m}{2}right). square
end{align*}$$
$endgroup$
$begingroup$
Thanks, but the notation is a bit obscure to me. This is the same as what I got, right?
$endgroup$
– becko
Dec 6 '18 at 20:40
$begingroup$
Yours is wrong, I think. To begin with, $N = d$ and $M = m,$ and in the integral you made the change of variables $u = r^2,$ so that $u' = 2r$ and then $int e^{-r^2} r^alpha dr = dfrac{1}{2}int e^{-u} u^{frac{alpha - 1}{2}} du.$ I think you factored out a $2^{frac{d - m}{2}-1}$ wrongly.
$endgroup$
– Will M.
Dec 7 '18 at 1:54
$begingroup$
I see what's wrong. In the original question the exponent was not divided by 2, but in my answer for some reason I divided by 2. If you correct for that we are getting equivalent results.
$endgroup$
– becko
Dec 7 '18 at 15:33
add a comment |
$begingroup$
Consider the homomorphism $x mapsto left( |x|, dfrac{x}{|x|} right)$ between $mathbf{R}^d setminus {0}$ and $(0, infty) times mathbf{S}_{d-1}.$ By the change of measures formula, the integral becomes
$$begin{align*}
intlimits_0^infty dr intlimits_{mathbf{S}_{d-1}} dsigma_d e^{-r^2}r^{-m} r^{d-1} &= sigma_{d-1}(mathbf{S}_{d-1}) intlimits_{0}^infty dr e^{-r^2} r^{d-m-1} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} intlimits_0^infty dr e^{-r} r^{frac{d-m-2}{2}} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} Gammaleft(dfrac{d-m}{2}right). square
end{align*}$$
$endgroup$
$begingroup$
Thanks, but the notation is a bit obscure to me. This is the same as what I got, right?
$endgroup$
– becko
Dec 6 '18 at 20:40
$begingroup$
Yours is wrong, I think. To begin with, $N = d$ and $M = m,$ and in the integral you made the change of variables $u = r^2,$ so that $u' = 2r$ and then $int e^{-r^2} r^alpha dr = dfrac{1}{2}int e^{-u} u^{frac{alpha - 1}{2}} du.$ I think you factored out a $2^{frac{d - m}{2}-1}$ wrongly.
$endgroup$
– Will M.
Dec 7 '18 at 1:54
$begingroup$
I see what's wrong. In the original question the exponent was not divided by 2, but in my answer for some reason I divided by 2. If you correct for that we are getting equivalent results.
$endgroup$
– becko
Dec 7 '18 at 15:33
add a comment |
$begingroup$
Consider the homomorphism $x mapsto left( |x|, dfrac{x}{|x|} right)$ between $mathbf{R}^d setminus {0}$ and $(0, infty) times mathbf{S}_{d-1}.$ By the change of measures formula, the integral becomes
$$begin{align*}
intlimits_0^infty dr intlimits_{mathbf{S}_{d-1}} dsigma_d e^{-r^2}r^{-m} r^{d-1} &= sigma_{d-1}(mathbf{S}_{d-1}) intlimits_{0}^infty dr e^{-r^2} r^{d-m-1} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} intlimits_0^infty dr e^{-r} r^{frac{d-m-2}{2}} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} Gammaleft(dfrac{d-m}{2}right). square
end{align*}$$
$endgroup$
Consider the homomorphism $x mapsto left( |x|, dfrac{x}{|x|} right)$ between $mathbf{R}^d setminus {0}$ and $(0, infty) times mathbf{S}_{d-1}.$ By the change of measures formula, the integral becomes
$$begin{align*}
intlimits_0^infty dr intlimits_{mathbf{S}_{d-1}} dsigma_d e^{-r^2}r^{-m} r^{d-1} &= sigma_{d-1}(mathbf{S}_{d-1}) intlimits_{0}^infty dr e^{-r^2} r^{d-m-1} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} intlimits_0^infty dr e^{-r} r^{frac{d-m-2}{2}} \
&= dfrac{sigma_{d-1}(mathbf{S}_{d-1})}{2} Gammaleft(dfrac{d-m}{2}right). square
end{align*}$$
answered Dec 6 '18 at 19:53
Will M.Will M.
2,630315
2,630315
$begingroup$
Thanks, but the notation is a bit obscure to me. This is the same as what I got, right?
$endgroup$
– becko
Dec 6 '18 at 20:40
$begingroup$
Yours is wrong, I think. To begin with, $N = d$ and $M = m,$ and in the integral you made the change of variables $u = r^2,$ so that $u' = 2r$ and then $int e^{-r^2} r^alpha dr = dfrac{1}{2}int e^{-u} u^{frac{alpha - 1}{2}} du.$ I think you factored out a $2^{frac{d - m}{2}-1}$ wrongly.
$endgroup$
– Will M.
Dec 7 '18 at 1:54
$begingroup$
I see what's wrong. In the original question the exponent was not divided by 2, but in my answer for some reason I divided by 2. If you correct for that we are getting equivalent results.
$endgroup$
– becko
Dec 7 '18 at 15:33
add a comment |
$begingroup$
Thanks, but the notation is a bit obscure to me. This is the same as what I got, right?
$endgroup$
– becko
Dec 6 '18 at 20:40
$begingroup$
Yours is wrong, I think. To begin with, $N = d$ and $M = m,$ and in the integral you made the change of variables $u = r^2,$ so that $u' = 2r$ and then $int e^{-r^2} r^alpha dr = dfrac{1}{2}int e^{-u} u^{frac{alpha - 1}{2}} du.$ I think you factored out a $2^{frac{d - m}{2}-1}$ wrongly.
$endgroup$
– Will M.
Dec 7 '18 at 1:54
$begingroup$
I see what's wrong. In the original question the exponent was not divided by 2, but in my answer for some reason I divided by 2. If you correct for that we are getting equivalent results.
$endgroup$
– becko
Dec 7 '18 at 15:33
$begingroup$
Thanks, but the notation is a bit obscure to me. This is the same as what I got, right?
$endgroup$
– becko
Dec 6 '18 at 20:40
$begingroup$
Thanks, but the notation is a bit obscure to me. This is the same as what I got, right?
$endgroup$
– becko
Dec 6 '18 at 20:40
$begingroup$
Yours is wrong, I think. To begin with, $N = d$ and $M = m,$ and in the integral you made the change of variables $u = r^2,$ so that $u' = 2r$ and then $int e^{-r^2} r^alpha dr = dfrac{1}{2}int e^{-u} u^{frac{alpha - 1}{2}} du.$ I think you factored out a $2^{frac{d - m}{2}-1}$ wrongly.
$endgroup$
– Will M.
Dec 7 '18 at 1:54
$begingroup$
Yours is wrong, I think. To begin with, $N = d$ and $M = m,$ and in the integral you made the change of variables $u = r^2,$ so that $u' = 2r$ and then $int e^{-r^2} r^alpha dr = dfrac{1}{2}int e^{-u} u^{frac{alpha - 1}{2}} du.$ I think you factored out a $2^{frac{d - m}{2}-1}$ wrongly.
$endgroup$
– Will M.
Dec 7 '18 at 1:54
$begingroup$
I see what's wrong. In the original question the exponent was not divided by 2, but in my answer for some reason I divided by 2. If you correct for that we are getting equivalent results.
$endgroup$
– becko
Dec 7 '18 at 15:33
$begingroup$
I see what's wrong. In the original question the exponent was not divided by 2, but in my answer for some reason I divided by 2. If you correct for that we are getting equivalent results.
$endgroup$
– becko
Dec 7 '18 at 15:33
add a comment |
$begingroup$
Introduce the spherical coordinates $r, theta, xi_1, ldots, xi_{N - 2}$,
$$ x_1 = r cos (xi_1), quad x_2 = r sin (xi_1) cos (xi_2), quad
ldots, quad x_N = r sin (xi_1) ldots sin (xi_{N - 2}) sin
(theta) $$
where $0 leqslant xi_i leqslant pi$, $0 leqslant theta leqslant 2 pi$
and $0 leqslant r < infty$. The volume element is given by $mathrm d x_1
ldots mathrm d x_N = r^{N - 1} mathrm d r mathrm d sigma$, where $mathrm d
sigma$ is the unit-sphere surface element,
$$mathrm d sigma = sin^{N - 2} (xi_1) ldots sin (xi_{n - 2}) mathrm d theta
mathrm d xi_1 ldots mathrm d xi_{N - 2}$$
It follows that:
$$begin{eqnarray*}
I & = & int_{- infty}^{infty} | {vec x} |^{- M} mathrm e^{- |
{vec x} |^2 / 2} mathrm d vec x\
& = & left( int_0^{infty} r^{N - M - 1} mathrm e^{- r^2/2}
mathrm d r right) left( int_{mathcal{S}} mathrm d sigma right)\
& = & 2^{(N - M) / 2 - 1} Gamma left( frac{N - M}{2}
right) frac{2 pi^{N / 2}}{Gamma (N / 2)}
end{eqnarray*}$$
where $mathcal S$ is the unit sphere.
$endgroup$
add a comment |
$begingroup$
Introduce the spherical coordinates $r, theta, xi_1, ldots, xi_{N - 2}$,
$$ x_1 = r cos (xi_1), quad x_2 = r sin (xi_1) cos (xi_2), quad
ldots, quad x_N = r sin (xi_1) ldots sin (xi_{N - 2}) sin
(theta) $$
where $0 leqslant xi_i leqslant pi$, $0 leqslant theta leqslant 2 pi$
and $0 leqslant r < infty$. The volume element is given by $mathrm d x_1
ldots mathrm d x_N = r^{N - 1} mathrm d r mathrm d sigma$, where $mathrm d
sigma$ is the unit-sphere surface element,
$$mathrm d sigma = sin^{N - 2} (xi_1) ldots sin (xi_{n - 2}) mathrm d theta
mathrm d xi_1 ldots mathrm d xi_{N - 2}$$
It follows that:
$$begin{eqnarray*}
I & = & int_{- infty}^{infty} | {vec x} |^{- M} mathrm e^{- |
{vec x} |^2 / 2} mathrm d vec x\
& = & left( int_0^{infty} r^{N - M - 1} mathrm e^{- r^2/2}
mathrm d r right) left( int_{mathcal{S}} mathrm d sigma right)\
& = & 2^{(N - M) / 2 - 1} Gamma left( frac{N - M}{2}
right) frac{2 pi^{N / 2}}{Gamma (N / 2)}
end{eqnarray*}$$
where $mathcal S$ is the unit sphere.
$endgroup$
add a comment |
$begingroup$
Introduce the spherical coordinates $r, theta, xi_1, ldots, xi_{N - 2}$,
$$ x_1 = r cos (xi_1), quad x_2 = r sin (xi_1) cos (xi_2), quad
ldots, quad x_N = r sin (xi_1) ldots sin (xi_{N - 2}) sin
(theta) $$
where $0 leqslant xi_i leqslant pi$, $0 leqslant theta leqslant 2 pi$
and $0 leqslant r < infty$. The volume element is given by $mathrm d x_1
ldots mathrm d x_N = r^{N - 1} mathrm d r mathrm d sigma$, where $mathrm d
sigma$ is the unit-sphere surface element,
$$mathrm d sigma = sin^{N - 2} (xi_1) ldots sin (xi_{n - 2}) mathrm d theta
mathrm d xi_1 ldots mathrm d xi_{N - 2}$$
It follows that:
$$begin{eqnarray*}
I & = & int_{- infty}^{infty} | {vec x} |^{- M} mathrm e^{- |
{vec x} |^2 / 2} mathrm d vec x\
& = & left( int_0^{infty} r^{N - M - 1} mathrm e^{- r^2/2}
mathrm d r right) left( int_{mathcal{S}} mathrm d sigma right)\
& = & 2^{(N - M) / 2 - 1} Gamma left( frac{N - M}{2}
right) frac{2 pi^{N / 2}}{Gamma (N / 2)}
end{eqnarray*}$$
where $mathcal S$ is the unit sphere.
$endgroup$
Introduce the spherical coordinates $r, theta, xi_1, ldots, xi_{N - 2}$,
$$ x_1 = r cos (xi_1), quad x_2 = r sin (xi_1) cos (xi_2), quad
ldots, quad x_N = r sin (xi_1) ldots sin (xi_{N - 2}) sin
(theta) $$
where $0 leqslant xi_i leqslant pi$, $0 leqslant theta leqslant 2 pi$
and $0 leqslant r < infty$. The volume element is given by $mathrm d x_1
ldots mathrm d x_N = r^{N - 1} mathrm d r mathrm d sigma$, where $mathrm d
sigma$ is the unit-sphere surface element,
$$mathrm d sigma = sin^{N - 2} (xi_1) ldots sin (xi_{n - 2}) mathrm d theta
mathrm d xi_1 ldots mathrm d xi_{N - 2}$$
It follows that:
$$begin{eqnarray*}
I & = & int_{- infty}^{infty} | {vec x} |^{- M} mathrm e^{- |
{vec x} |^2 / 2} mathrm d vec x\
& = & left( int_0^{infty} r^{N - M - 1} mathrm e^{- r^2/2}
mathrm d r right) left( int_{mathcal{S}} mathrm d sigma right)\
& = & 2^{(N - M) / 2 - 1} Gamma left( frac{N - M}{2}
right) frac{2 pi^{N / 2}}{Gamma (N / 2)}
end{eqnarray*}$$
where $mathcal S$ is the unit sphere.
answered Dec 6 '18 at 19:24
beckobecko
2,35431942
2,35431942
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028920%2fintegrate-int-infty-infty-exp-vec-x2-vec-x-m-mathrmd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown