Solve linear congruences
$begingroup$
Solve linear congruences system
- $11x equiv 10 mod 12$
- $14x equiv 10 mod 15$
- $20x equiv 10 mod 21$
We need to find x that is closest to 1200. The correct solution is 1250.
This is the way I have done it:
First I converted all equations to their correct shape:
- $x equiv 2 mod 12$
- $x equiv 5 mod 15$
- $x equiv 11 mod 21$
Then I do $x = 2 + 12*k$, which I put into the second equation and I get $k = 4 mod 15$. I put that back into first one and I get $x = 5 + 18*h$. I put that into the third one and I get $h = 6 + 7*m$. But how am I supposed to solve this. I also know the solution needs to be in modulo $420$, because $lcm(12,15,21)=420$.
discrete-mathematics modular-arithmetic congruence-relations
$endgroup$
add a comment |
$begingroup$
Solve linear congruences system
- $11x equiv 10 mod 12$
- $14x equiv 10 mod 15$
- $20x equiv 10 mod 21$
We need to find x that is closest to 1200. The correct solution is 1250.
This is the way I have done it:
First I converted all equations to their correct shape:
- $x equiv 2 mod 12$
- $x equiv 5 mod 15$
- $x equiv 11 mod 21$
Then I do $x = 2 + 12*k$, which I put into the second equation and I get $k = 4 mod 15$. I put that back into first one and I get $x = 5 + 18*h$. I put that into the third one and I get $h = 6 + 7*m$. But how am I supposed to solve this. I also know the solution needs to be in modulo $420$, because $lcm(12,15,21)=420$.
discrete-mathematics modular-arithmetic congruence-relations
$endgroup$
$begingroup$
To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
$endgroup$
– gimusi
Dec 16 '18 at 11:34
add a comment |
$begingroup$
Solve linear congruences system
- $11x equiv 10 mod 12$
- $14x equiv 10 mod 15$
- $20x equiv 10 mod 21$
We need to find x that is closest to 1200. The correct solution is 1250.
This is the way I have done it:
First I converted all equations to their correct shape:
- $x equiv 2 mod 12$
- $x equiv 5 mod 15$
- $x equiv 11 mod 21$
Then I do $x = 2 + 12*k$, which I put into the second equation and I get $k = 4 mod 15$. I put that back into first one and I get $x = 5 + 18*h$. I put that into the third one and I get $h = 6 + 7*m$. But how am I supposed to solve this. I also know the solution needs to be in modulo $420$, because $lcm(12,15,21)=420$.
discrete-mathematics modular-arithmetic congruence-relations
$endgroup$
Solve linear congruences system
- $11x equiv 10 mod 12$
- $14x equiv 10 mod 15$
- $20x equiv 10 mod 21$
We need to find x that is closest to 1200. The correct solution is 1250.
This is the way I have done it:
First I converted all equations to their correct shape:
- $x equiv 2 mod 12$
- $x equiv 5 mod 15$
- $x equiv 11 mod 21$
Then I do $x = 2 + 12*k$, which I put into the second equation and I get $k = 4 mod 15$. I put that back into first one and I get $x = 5 + 18*h$. I put that into the third one and I get $h = 6 + 7*m$. But how am I supposed to solve this. I also know the solution needs to be in modulo $420$, because $lcm(12,15,21)=420$.
discrete-mathematics modular-arithmetic congruence-relations
discrete-mathematics modular-arithmetic congruence-relations
edited Dec 16 '18 at 10:30
gimusi
92.9k84494
92.9k84494
asked Dec 16 '18 at 8:43
ponikoliponikoli
416
416
$begingroup$
To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
$endgroup$
– gimusi
Dec 16 '18 at 11:34
add a comment |
$begingroup$
To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
$endgroup$
– gimusi
Dec 16 '18 at 11:34
$begingroup$
To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
$endgroup$
– gimusi
Dec 16 '18 at 11:34
$begingroup$
To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
$endgroup$
– gimusi
Dec 16 '18 at 11:34
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You can plug $x=12a+2$ into the second and third equations:
$$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
Now plug $a=5b+4$ into the last equation:
$$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
Now go back:
$$a=5b+4=5(7c+6)+4=35c+34;\
x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
xequiv 410 pmod{420}.$$
Verifying $x=410$:
$$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$
You can check $x=420cdot 2+410=1250$ youserlf.
$endgroup$
add a comment |
$begingroup$
Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$
${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042379%2fsolve-linear-congruences%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can plug $x=12a+2$ into the second and third equations:
$$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
Now plug $a=5b+4$ into the last equation:
$$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
Now go back:
$$a=5b+4=5(7c+6)+4=35c+34;\
x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
xequiv 410 pmod{420}.$$
Verifying $x=410$:
$$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$
You can check $x=420cdot 2+410=1250$ youserlf.
$endgroup$
add a comment |
$begingroup$
You can plug $x=12a+2$ into the second and third equations:
$$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
Now plug $a=5b+4$ into the last equation:
$$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
Now go back:
$$a=5b+4=5(7c+6)+4=35c+34;\
x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
xequiv 410 pmod{420}.$$
Verifying $x=410$:
$$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$
You can check $x=420cdot 2+410=1250$ youserlf.
$endgroup$
add a comment |
$begingroup$
You can plug $x=12a+2$ into the second and third equations:
$$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
Now plug $a=5b+4$ into the last equation:
$$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
Now go back:
$$a=5b+4=5(7c+6)+4=35c+34;\
x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
xequiv 410 pmod{420}.$$
Verifying $x=410$:
$$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$
You can check $x=420cdot 2+410=1250$ youserlf.
$endgroup$
You can plug $x=12a+2$ into the second and third equations:
$$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
Now plug $a=5b+4$ into the last equation:
$$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
Now go back:
$$a=5b+4=5(7c+6)+4=35c+34;\
x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
xequiv 410 pmod{420}.$$
Verifying $x=410$:
$$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$
You can check $x=420cdot 2+410=1250$ youserlf.
answered Dec 16 '18 at 11:35
farruhotafarruhota
20.7k2740
20.7k2740
add a comment |
add a comment |
$begingroup$
Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$
${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$
$endgroup$
add a comment |
$begingroup$
Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$
${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$
$endgroup$
add a comment |
$begingroup$
Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$
${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$
$endgroup$
Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$
${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$
edited Dec 16 '18 at 21:32
answered Dec 16 '18 at 21:09
Bill DubuqueBill Dubuque
212k29195650
212k29195650
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042379%2fsolve-linear-congruences%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
$endgroup$
– gimusi
Dec 16 '18 at 11:34