Solve linear congruences












0












$begingroup$


Solve linear congruences system




  • $11x equiv 10 mod 12$

  • $14x equiv 10 mod 15$

  • $20x equiv 10 mod 21$


We need to find x that is closest to 1200. The correct solution is 1250.



This is the way I have done it:
First I converted all equations to their correct shape:




  • $x equiv 2 mod 12$

  • $x equiv 5 mod 15$

  • $x equiv 11 mod 21$


Then I do $x = 2 + 12*k$, which I put into the second equation and I get $k = 4 mod 15$. I put that back into first one and I get $x = 5 + 18*h$. I put that into the third one and I get $h = 6 + 7*m$. But how am I supposed to solve this. I also know the solution needs to be in modulo $420$, because $lcm(12,15,21)=420$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
    $endgroup$
    – gimusi
    Dec 16 '18 at 11:34


















0












$begingroup$


Solve linear congruences system




  • $11x equiv 10 mod 12$

  • $14x equiv 10 mod 15$

  • $20x equiv 10 mod 21$


We need to find x that is closest to 1200. The correct solution is 1250.



This is the way I have done it:
First I converted all equations to their correct shape:




  • $x equiv 2 mod 12$

  • $x equiv 5 mod 15$

  • $x equiv 11 mod 21$


Then I do $x = 2 + 12*k$, which I put into the second equation and I get $k = 4 mod 15$. I put that back into first one and I get $x = 5 + 18*h$. I put that into the third one and I get $h = 6 + 7*m$. But how am I supposed to solve this. I also know the solution needs to be in modulo $420$, because $lcm(12,15,21)=420$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
    $endgroup$
    – gimusi
    Dec 16 '18 at 11:34
















0












0








0





$begingroup$


Solve linear congruences system




  • $11x equiv 10 mod 12$

  • $14x equiv 10 mod 15$

  • $20x equiv 10 mod 21$


We need to find x that is closest to 1200. The correct solution is 1250.



This is the way I have done it:
First I converted all equations to their correct shape:




  • $x equiv 2 mod 12$

  • $x equiv 5 mod 15$

  • $x equiv 11 mod 21$


Then I do $x = 2 + 12*k$, which I put into the second equation and I get $k = 4 mod 15$. I put that back into first one and I get $x = 5 + 18*h$. I put that into the third one and I get $h = 6 + 7*m$. But how am I supposed to solve this. I also know the solution needs to be in modulo $420$, because $lcm(12,15,21)=420$.










share|cite|improve this question











$endgroup$




Solve linear congruences system




  • $11x equiv 10 mod 12$

  • $14x equiv 10 mod 15$

  • $20x equiv 10 mod 21$


We need to find x that is closest to 1200. The correct solution is 1250.



This is the way I have done it:
First I converted all equations to their correct shape:




  • $x equiv 2 mod 12$

  • $x equiv 5 mod 15$

  • $x equiv 11 mod 21$


Then I do $x = 2 + 12*k$, which I put into the second equation and I get $k = 4 mod 15$. I put that back into first one and I get $x = 5 + 18*h$. I put that into the third one and I get $h = 6 + 7*m$. But how am I supposed to solve this. I also know the solution needs to be in modulo $420$, because $lcm(12,15,21)=420$.







discrete-mathematics modular-arithmetic congruence-relations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 16 '18 at 10:30









gimusi

92.9k84494




92.9k84494










asked Dec 16 '18 at 8:43









ponikoliponikoli

416




416












  • $begingroup$
    To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
    $endgroup$
    – gimusi
    Dec 16 '18 at 11:34




















  • $begingroup$
    To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
    $endgroup$
    – gimusi
    Dec 16 '18 at 11:34


















$begingroup$
To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
$endgroup$
– gimusi
Dec 16 '18 at 11:34






$begingroup$
To be sure that the system has solution (12,15,21) should be coprimes. To apply CRT we need to write at first the equivalent system for the factors $12=3cdot 4$, $15=3cdot 5$ and $21=3cdot 7$ and check that it is consistent.
$endgroup$
– gimusi
Dec 16 '18 at 11:34












2 Answers
2






active

oldest

votes


















0












$begingroup$

You can plug $x=12a+2$ into the second and third equations:
$$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
Now plug $a=5b+4$ into the last equation:
$$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
Now go back:
$$a=5b+4=5(7c+6)+4=35c+34;\
x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
xequiv 410 pmod{420}.$$

Verifying $x=410$:
$$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$

You can check $x=420cdot 2+410=1250$ youserlf.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$



    ${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042379%2fsolve-linear-congruences%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      You can plug $x=12a+2$ into the second and third equations:
      $$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
      Now plug $a=5b+4$ into the last equation:
      $$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
      Now go back:
      $$a=5b+4=5(7c+6)+4=35c+34;\
      x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
      xequiv 410 pmod{420}.$$

      Verifying $x=410$:
      $$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
      14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
      20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$

      You can check $x=420cdot 2+410=1250$ youserlf.






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        You can plug $x=12a+2$ into the second and third equations:
        $$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
        Now plug $a=5b+4$ into the last equation:
        $$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
        Now go back:
        $$a=5b+4=5(7c+6)+4=35c+34;\
        x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
        xequiv 410 pmod{420}.$$

        Verifying $x=410$:
        $$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
        14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
        20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$

        You can check $x=420cdot 2+410=1250$ youserlf.






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          You can plug $x=12a+2$ into the second and third equations:
          $$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
          Now plug $a=5b+4$ into the last equation:
          $$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
          Now go back:
          $$a=5b+4=5(7c+6)+4=35c+34;\
          x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
          xequiv 410 pmod{420}.$$

          Verifying $x=410$:
          $$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
          14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
          20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$

          You can check $x=420cdot 2+410=1250$ youserlf.






          share|cite|improve this answer









          $endgroup$



          You can plug $x=12a+2$ into the second and third equations:
          $$begin{cases}12a+2equiv 5 pmod{15} \ 12a+2equiv 11 pmod{21}end{cases} Rightarrow begin{cases}aequiv 4 pmod{5} \ aequiv 6 pmod{7}end{cases}$$
          Now plug $a=5b+4$ into the last equation:
          $$5b+4equiv 6 pmod{7} Rightarrow bequiv 6 pmod{7} Rightarrow b=7c+6$$
          Now go back:
          $$a=5b+4=5(7c+6)+4=35c+34;\
          x=12a+2=12(35c+34)+34=420c+410 Rightarrow \
          xequiv 410 pmod{420}.$$

          Verifying $x=410$:
          $$11cdot 410equiv 4510 equiv 375cdot 12+10equiv 10 pmod{12};\
          14cdot 410equiv 5740 equiv 382cdot 15+10equiv 10 pmod{15};\
          20cdot 410equiv 8200 equiv 390cdot 21+10equiv 10 pmod{21}.$$

          You can check $x=420cdot 2+410=1250$ youserlf.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 16 '18 at 11:35









          farruhotafarruhota

          20.7k2740




          20.7k2740























              0












              $begingroup$

              Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$



              ${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$



                ${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$



                  ${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$






                  share|cite|improve this answer











                  $endgroup$



                  Hint $ {-}xequiv 10pmod {!a,b,c}iff a,b,cmid x!+!10iff{rm lcm}(a,b,c)mid x!+!10$



                  ${rm lcm}(12,15,21) = 3, {rm lcm}(4,5,7) = 3cdot 4cdot 5cdot 7 = 20cdot 21 = 420,, $ hence $,xequiv -10pmod{!420}$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 16 '18 at 21:32

























                  answered Dec 16 '18 at 21:09









                  Bill DubuqueBill Dubuque

                  212k29195650




                  212k29195650






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042379%2fsolve-linear-congruences%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten