Confused on $ in mathcal{L}(X,mu)$ and $in mathcal{L}(X,nu)$
$begingroup$
I have come across an uncertainty in a proof I have just read:
Let $(X,mathcal{A})$ be measure space and $mu, nu, eta$ be $sigma-$finite measures such that $eta ll nu$ and $nu ll mu$
Show that $frac{deta}{dmu}=frac{deta}{dnu}frac{dnu}{dmu}, mu-$a.e.
My professor defines $(A_{n}^s)_{s}subseteq X$ s.t. $S(A_{n}^s)<infty, forall n in mathbb N$, whereby $A_{n}^{s}subseteq A_{n+1}^{s}$and $bigcup_{n in mathbb n}A_{n}^s=X, forall s in {mu, nu, eta}$ and $A_{n}:=A_{n}^{mu}cap A_{n}^{nu}cap A_{n}^{eta}$
Then following continuity from below, for all $A in mathcal{A}$
$eta(A)=lim_{nto infty}eta(A cap A_{n})=lim_{nto infty}int_{A cap A_{n}}frac{deta}{dnu}dnu=lim_{nto infty}int_{A}chi_{A_{n}}frac{deta}{dnu}{dnu}$
Problem: Then it states $chi_{A_{n}}frac{deta}{dnu}in mathcal{L}(X,mu)$ because $eta(A_{n})<infty$. Surely this is not correct. If anything it should be $chi_{A_{n}}frac{deta}{dnu}in mathcal{L}(X,nu)$ since by definition of the Radon-Nikodym derivative $frac{deta}{dnu}$ is measurable and $geq 0$. Furthermore, is the statement of this fact even necessary as $Acap A_{n}in mathcal{A}$ and is therefore by definition measurable w.r.t. $eta$.
I am only interested in the problem I laid out, not the RTP.
real-analysis measure-theory radon-nikodym
$endgroup$
add a comment |
$begingroup$
I have come across an uncertainty in a proof I have just read:
Let $(X,mathcal{A})$ be measure space and $mu, nu, eta$ be $sigma-$finite measures such that $eta ll nu$ and $nu ll mu$
Show that $frac{deta}{dmu}=frac{deta}{dnu}frac{dnu}{dmu}, mu-$a.e.
My professor defines $(A_{n}^s)_{s}subseteq X$ s.t. $S(A_{n}^s)<infty, forall n in mathbb N$, whereby $A_{n}^{s}subseteq A_{n+1}^{s}$and $bigcup_{n in mathbb n}A_{n}^s=X, forall s in {mu, nu, eta}$ and $A_{n}:=A_{n}^{mu}cap A_{n}^{nu}cap A_{n}^{eta}$
Then following continuity from below, for all $A in mathcal{A}$
$eta(A)=lim_{nto infty}eta(A cap A_{n})=lim_{nto infty}int_{A cap A_{n}}frac{deta}{dnu}dnu=lim_{nto infty}int_{A}chi_{A_{n}}frac{deta}{dnu}{dnu}$
Problem: Then it states $chi_{A_{n}}frac{deta}{dnu}in mathcal{L}(X,mu)$ because $eta(A_{n})<infty$. Surely this is not correct. If anything it should be $chi_{A_{n}}frac{deta}{dnu}in mathcal{L}(X,nu)$ since by definition of the Radon-Nikodym derivative $frac{deta}{dnu}$ is measurable and $geq 0$. Furthermore, is the statement of this fact even necessary as $Acap A_{n}in mathcal{A}$ and is therefore by definition measurable w.r.t. $eta$.
I am only interested in the problem I laid out, not the RTP.
real-analysis measure-theory radon-nikodym
$endgroup$
add a comment |
$begingroup$
I have come across an uncertainty in a proof I have just read:
Let $(X,mathcal{A})$ be measure space and $mu, nu, eta$ be $sigma-$finite measures such that $eta ll nu$ and $nu ll mu$
Show that $frac{deta}{dmu}=frac{deta}{dnu}frac{dnu}{dmu}, mu-$a.e.
My professor defines $(A_{n}^s)_{s}subseteq X$ s.t. $S(A_{n}^s)<infty, forall n in mathbb N$, whereby $A_{n}^{s}subseteq A_{n+1}^{s}$and $bigcup_{n in mathbb n}A_{n}^s=X, forall s in {mu, nu, eta}$ and $A_{n}:=A_{n}^{mu}cap A_{n}^{nu}cap A_{n}^{eta}$
Then following continuity from below, for all $A in mathcal{A}$
$eta(A)=lim_{nto infty}eta(A cap A_{n})=lim_{nto infty}int_{A cap A_{n}}frac{deta}{dnu}dnu=lim_{nto infty}int_{A}chi_{A_{n}}frac{deta}{dnu}{dnu}$
Problem: Then it states $chi_{A_{n}}frac{deta}{dnu}in mathcal{L}(X,mu)$ because $eta(A_{n})<infty$. Surely this is not correct. If anything it should be $chi_{A_{n}}frac{deta}{dnu}in mathcal{L}(X,nu)$ since by definition of the Radon-Nikodym derivative $frac{deta}{dnu}$ is measurable and $geq 0$. Furthermore, is the statement of this fact even necessary as $Acap A_{n}in mathcal{A}$ and is therefore by definition measurable w.r.t. $eta$.
I am only interested in the problem I laid out, not the RTP.
real-analysis measure-theory radon-nikodym
$endgroup$
I have come across an uncertainty in a proof I have just read:
Let $(X,mathcal{A})$ be measure space and $mu, nu, eta$ be $sigma-$finite measures such that $eta ll nu$ and $nu ll mu$
Show that $frac{deta}{dmu}=frac{deta}{dnu}frac{dnu}{dmu}, mu-$a.e.
My professor defines $(A_{n}^s)_{s}subseteq X$ s.t. $S(A_{n}^s)<infty, forall n in mathbb N$, whereby $A_{n}^{s}subseteq A_{n+1}^{s}$and $bigcup_{n in mathbb n}A_{n}^s=X, forall s in {mu, nu, eta}$ and $A_{n}:=A_{n}^{mu}cap A_{n}^{nu}cap A_{n}^{eta}$
Then following continuity from below, for all $A in mathcal{A}$
$eta(A)=lim_{nto infty}eta(A cap A_{n})=lim_{nto infty}int_{A cap A_{n}}frac{deta}{dnu}dnu=lim_{nto infty}int_{A}chi_{A_{n}}frac{deta}{dnu}{dnu}$
Problem: Then it states $chi_{A_{n}}frac{deta}{dnu}in mathcal{L}(X,mu)$ because $eta(A_{n})<infty$. Surely this is not correct. If anything it should be $chi_{A_{n}}frac{deta}{dnu}in mathcal{L}(X,nu)$ since by definition of the Radon-Nikodym derivative $frac{deta}{dnu}$ is measurable and $geq 0$. Furthermore, is the statement of this fact even necessary as $Acap A_{n}in mathcal{A}$ and is therefore by definition measurable w.r.t. $eta$.
I am only interested in the problem I laid out, not the RTP.
real-analysis measure-theory radon-nikodym
real-analysis measure-theory radon-nikodym
asked Dec 30 '18 at 22:04
SABOYSABOY
600311
600311
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057238%2fconfused-on-in-mathcallx-mu-and-in-mathcallx-nu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057238%2fconfused-on-in-mathcallx-mu-and-in-mathcallx-nu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown