if $x-y =sqrt{x}-sqrt{y}$ with $xneq y$ then $(1+frac{1}{x})(1+frac{1}{y})geq 25$?
$begingroup$
let $xneq y$ be positive real numbers such that :$x-y= sqrt{x}-sqrt{y}$ , I have tried to prove this inequality $(1+frac{1}{x})(1+frac{1}{y})geq 25$ that i have created but i didn't got it.
Attempt I have showed that:$(frac{1}{x}+frac{1}{y})geq frac{2}{sqrt{xy}}$ using this identity: $(sqrt{x}-sqrt{y})^2geq0$ , I also showed that :$frac{1}{xy}geq frac{1}{16}$ , Now I have used both result I have got the following inequality :$(1+frac{y}{x})(1+frac{x}{y})geq 25$ but not what i have claimed , any way ?
real-analysis inequality a.m.-g.m.-inequality
$endgroup$
|
show 6 more comments
$begingroup$
let $xneq y$ be positive real numbers such that :$x-y= sqrt{x}-sqrt{y}$ , I have tried to prove this inequality $(1+frac{1}{x})(1+frac{1}{y})geq 25$ that i have created but i didn't got it.
Attempt I have showed that:$(frac{1}{x}+frac{1}{y})geq frac{2}{sqrt{xy}}$ using this identity: $(sqrt{x}-sqrt{y})^2geq0$ , I also showed that :$frac{1}{xy}geq frac{1}{16}$ , Now I have used both result I have got the following inequality :$(1+frac{y}{x})(1+frac{x}{y})geq 25$ but not what i have claimed , any way ?
real-analysis inequality a.m.-g.m.-inequality
$endgroup$
3
$begingroup$
I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
$endgroup$
– Tito Eliatron
Dec 30 '18 at 22:51
1
$begingroup$
If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
$endgroup$
– Steve Kass
Dec 30 '18 at 22:51
1
$begingroup$
Tkae $;x=y=1;$ as an easy counter example....
$endgroup$
– DonAntonio
Dec 30 '18 at 22:51
2
$begingroup$
If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
$endgroup$
– Cheerful Parsnip
Dec 30 '18 at 22:52
1
$begingroup$
@TitoEliatron you mean $sqrt x+sqrt y=1$
$endgroup$
– Mark Bennet
Dec 30 '18 at 23:04
|
show 6 more comments
$begingroup$
let $xneq y$ be positive real numbers such that :$x-y= sqrt{x}-sqrt{y}$ , I have tried to prove this inequality $(1+frac{1}{x})(1+frac{1}{y})geq 25$ that i have created but i didn't got it.
Attempt I have showed that:$(frac{1}{x}+frac{1}{y})geq frac{2}{sqrt{xy}}$ using this identity: $(sqrt{x}-sqrt{y})^2geq0$ , I also showed that :$frac{1}{xy}geq frac{1}{16}$ , Now I have used both result I have got the following inequality :$(1+frac{y}{x})(1+frac{x}{y})geq 25$ but not what i have claimed , any way ?
real-analysis inequality a.m.-g.m.-inequality
$endgroup$
let $xneq y$ be positive real numbers such that :$x-y= sqrt{x}-sqrt{y}$ , I have tried to prove this inequality $(1+frac{1}{x})(1+frac{1}{y})geq 25$ that i have created but i didn't got it.
Attempt I have showed that:$(frac{1}{x}+frac{1}{y})geq frac{2}{sqrt{xy}}$ using this identity: $(sqrt{x}-sqrt{y})^2geq0$ , I also showed that :$frac{1}{xy}geq frac{1}{16}$ , Now I have used both result I have got the following inequality :$(1+frac{y}{x})(1+frac{x}{y})geq 25$ but not what i have claimed , any way ?
real-analysis inequality a.m.-g.m.-inequality
real-analysis inequality a.m.-g.m.-inequality
edited Dec 31 '18 at 4:21
Michael Rozenberg
111k1897201
111k1897201
asked Dec 30 '18 at 22:44
zeraoulia rafikzeraoulia rafik
2,41211134
2,41211134
3
$begingroup$
I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
$endgroup$
– Tito Eliatron
Dec 30 '18 at 22:51
1
$begingroup$
If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
$endgroup$
– Steve Kass
Dec 30 '18 at 22:51
1
$begingroup$
Tkae $;x=y=1;$ as an easy counter example....
$endgroup$
– DonAntonio
Dec 30 '18 at 22:51
2
$begingroup$
If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
$endgroup$
– Cheerful Parsnip
Dec 30 '18 at 22:52
1
$begingroup$
@TitoEliatron you mean $sqrt x+sqrt y=1$
$endgroup$
– Mark Bennet
Dec 30 '18 at 23:04
|
show 6 more comments
3
$begingroup$
I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
$endgroup$
– Tito Eliatron
Dec 30 '18 at 22:51
1
$begingroup$
If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
$endgroup$
– Steve Kass
Dec 30 '18 at 22:51
1
$begingroup$
Tkae $;x=y=1;$ as an easy counter example....
$endgroup$
– DonAntonio
Dec 30 '18 at 22:51
2
$begingroup$
If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
$endgroup$
– Cheerful Parsnip
Dec 30 '18 at 22:52
1
$begingroup$
@TitoEliatron you mean $sqrt x+sqrt y=1$
$endgroup$
– Mark Bennet
Dec 30 '18 at 23:04
3
3
$begingroup$
I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
$endgroup$
– Tito Eliatron
Dec 30 '18 at 22:51
$begingroup$
I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
$endgroup$
– Tito Eliatron
Dec 30 '18 at 22:51
1
1
$begingroup$
If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
$endgroup$
– Steve Kass
Dec 30 '18 at 22:51
$begingroup$
If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
$endgroup$
– Steve Kass
Dec 30 '18 at 22:51
1
1
$begingroup$
Tkae $;x=y=1;$ as an easy counter example....
$endgroup$
– DonAntonio
Dec 30 '18 at 22:51
$begingroup$
Tkae $;x=y=1;$ as an easy counter example....
$endgroup$
– DonAntonio
Dec 30 '18 at 22:51
2
2
$begingroup$
If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
$endgroup$
– Cheerful Parsnip
Dec 30 '18 at 22:52
$begingroup$
If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
$endgroup$
– Cheerful Parsnip
Dec 30 '18 at 22:52
1
1
$begingroup$
@TitoEliatron you mean $sqrt x+sqrt y=1$
$endgroup$
– Mark Bennet
Dec 30 '18 at 23:04
$begingroup$
@TitoEliatron you mean $sqrt x+sqrt y=1$
$endgroup$
– Mark Bennet
Dec 30 '18 at 23:04
|
show 6 more comments
4 Answers
4
active
oldest
votes
$begingroup$
Following the hints of the comments, your condition implies that
$$sqrt{x} + sqrt{y} = 1$$
AM-GM states
$$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
Use Cauchy on
$$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
Pluggin in what you got in the AM-GM for $sqrt{xy}$,
$$geq (1+ 4)^2 =25$$
$endgroup$
add a comment |
$begingroup$
Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then
$$begin{align}
x-sqrt x=y-sqrt y
&implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
&implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
&implies{v+uover uv}=1\
&implies{1over u}+{1over v}=1
end{align}$$
provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have
$${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$
It follows that
$$begin{align}
left(1+{1over x}right)left(1+{1over y}right)
&=(1+u^2)(1+v^2)\
&=1+u^2+v^2+u^2v^2\
&=1+2u^2+2v^2+2u+2v\
&={(2u+1)^2+(2v+1)^2over2}\
>{(2cdot1+1)^2+(2cdot1+1)^2over2}\
&=25
end{align}$$
$endgroup$
add a comment |
$begingroup$
By AM-GM
$$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
$$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$
$endgroup$
add a comment |
$begingroup$
The function
$$ymapsto logleft(1+tfrac{1}{y^2}right)$$
is convex on $(0,infty)$, so Jensen's inequality
$$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
$$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
for any positive random variable $X$.
Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
$$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
Then the inequality above is
$$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
taking exponentials, we have shown that
$$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
OP's inequality is the case $N=2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057254%2fif-x-y-sqrtx-sqrty-with-x-neq-y-then-1-frac1x1-frac1y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Following the hints of the comments, your condition implies that
$$sqrt{x} + sqrt{y} = 1$$
AM-GM states
$$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
Use Cauchy on
$$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
Pluggin in what you got in the AM-GM for $sqrt{xy}$,
$$geq (1+ 4)^2 =25$$
$endgroup$
add a comment |
$begingroup$
Following the hints of the comments, your condition implies that
$$sqrt{x} + sqrt{y} = 1$$
AM-GM states
$$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
Use Cauchy on
$$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
Pluggin in what you got in the AM-GM for $sqrt{xy}$,
$$geq (1+ 4)^2 =25$$
$endgroup$
add a comment |
$begingroup$
Following the hints of the comments, your condition implies that
$$sqrt{x} + sqrt{y} = 1$$
AM-GM states
$$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
Use Cauchy on
$$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
Pluggin in what you got in the AM-GM for $sqrt{xy}$,
$$geq (1+ 4)^2 =25$$
$endgroup$
Following the hints of the comments, your condition implies that
$$sqrt{x} + sqrt{y} = 1$$
AM-GM states
$$1 geq 2sqrt{sqrt{xy}} implies 1/4 geq sqrt{xy}$$
Use Cauchy on
$$(1+1/x)(1+1/y) geq (1+1/sqrt{xy})^2$$
Pluggin in what you got in the AM-GM for $sqrt{xy}$,
$$geq (1+ 4)^2 =25$$
answered Dec 30 '18 at 23:30
Jack FJack F
1112
1112
add a comment |
add a comment |
$begingroup$
Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then
$$begin{align}
x-sqrt x=y-sqrt y
&implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
&implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
&implies{v+uover uv}=1\
&implies{1over u}+{1over v}=1
end{align}$$
provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have
$${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$
It follows that
$$begin{align}
left(1+{1over x}right)left(1+{1over y}right)
&=(1+u^2)(1+v^2)\
&=1+u^2+v^2+u^2v^2\
&=1+2u^2+2v^2+2u+2v\
&={(2u+1)^2+(2v+1)^2over2}\
>{(2cdot1+1)^2+(2cdot1+1)^2over2}\
&=25
end{align}$$
$endgroup$
add a comment |
$begingroup$
Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then
$$begin{align}
x-sqrt x=y-sqrt y
&implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
&implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
&implies{v+uover uv}=1\
&implies{1over u}+{1over v}=1
end{align}$$
provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have
$${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$
It follows that
$$begin{align}
left(1+{1over x}right)left(1+{1over y}right)
&=(1+u^2)(1+v^2)\
&=1+u^2+v^2+u^2v^2\
&=1+2u^2+2v^2+2u+2v\
&={(2u+1)^2+(2v+1)^2over2}\
>{(2cdot1+1)^2+(2cdot1+1)^2over2}\
&=25
end{align}$$
$endgroup$
add a comment |
$begingroup$
Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then
$$begin{align}
x-sqrt x=y-sqrt y
&implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
&implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
&implies{v+uover uv}=1\
&implies{1over u}+{1over v}=1
end{align}$$
provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have
$${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$
It follows that
$$begin{align}
left(1+{1over x}right)left(1+{1over y}right)
&=(1+u^2)(1+v^2)\
&=1+u^2+v^2+u^2v^2\
&=1+2u^2+2v^2+2u+2v\
&={(2u+1)^2+(2v+1)^2over2}\
>{(2cdot1+1)^2+(2cdot1+1)^2over2}\
&=25
end{align}$$
$endgroup$
Just to give a different approach, let $x=1/u^2$ and $y=1/v^2$ with $u,vgt0$. Then
$$begin{align}
x-sqrt x=y-sqrt y
&implies{1over u^2}-{1over v^2}={1over u}-{1over v}\
&implies{(v-u)(v+u)over u^2v^2}={v-uover uv}\
&implies{v+uover uv}=1\
&implies{1over u}+{1over v}=1
end{align}$$
provided $unot=v$ (i.e., provided $xnot=y$), which allows the cancellation of the $v-u$ term. Note this now requires $u,vgt1$. We also have
$${v+uover uv}=1implies uv=u+vimplies u^2v^2=(v+u)^2=u^2+v^2+2uv=u^2+v^2+2u+2v$$
It follows that
$$begin{align}
left(1+{1over x}right)left(1+{1over y}right)
&=(1+u^2)(1+v^2)\
&=1+u^2+v^2+u^2v^2\
&=1+2u^2+2v^2+2u+2v\
&={(2u+1)^2+(2v+1)^2over2}\
>{(2cdot1+1)^2+(2cdot1+1)^2over2}\
&=25
end{align}$$
answered Dec 31 '18 at 0:53
Barry CipraBarry Cipra
60.9k655129
60.9k655129
add a comment |
add a comment |
$begingroup$
By AM-GM
$$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
$$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$
$endgroup$
add a comment |
$begingroup$
By AM-GM
$$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
$$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$
$endgroup$
add a comment |
$begingroup$
By AM-GM
$$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
$$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$
$endgroup$
By AM-GM
$$left(1+frac{1}{x}right)left(1+frac{1}{y}right)=left(1+frac{4}{4x}right)left(1+frac{4}{4y}right)geq$$
$$geqfrac{5}{sqrt[5]{(4x)^4}}cdotfrac{5}{sqrt[5]{(4y)^4}}=frac{25}{sqrt[5]{4^{8}left(sqrt{xy}right)^8}}geqfrac{5}{sqrt[5]{4^8left(frac{sqrt{x}+sqrt{y}}{2}right)^{16}}}=25.$$
answered Dec 31 '18 at 2:24
Michael RozenbergMichael Rozenberg
111k1897201
111k1897201
add a comment |
add a comment |
$begingroup$
The function
$$ymapsto logleft(1+tfrac{1}{y^2}right)$$
is convex on $(0,infty)$, so Jensen's inequality
$$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
$$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
for any positive random variable $X$.
Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
$$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
Then the inequality above is
$$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
taking exponentials, we have shown that
$$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
OP's inequality is the case $N=2$.
$endgroup$
add a comment |
$begingroup$
The function
$$ymapsto logleft(1+tfrac{1}{y^2}right)$$
is convex on $(0,infty)$, so Jensen's inequality
$$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
$$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
for any positive random variable $X$.
Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
$$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
Then the inequality above is
$$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
taking exponentials, we have shown that
$$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
OP's inequality is the case $N=2$.
$endgroup$
add a comment |
$begingroup$
The function
$$ymapsto logleft(1+tfrac{1}{y^2}right)$$
is convex on $(0,infty)$, so Jensen's inequality
$$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
$$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
for any positive random variable $X$.
Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
$$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
Then the inequality above is
$$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
taking exponentials, we have shown that
$$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
OP's inequality is the case $N=2$.
$endgroup$
The function
$$ymapsto logleft(1+tfrac{1}{y^2}right)$$
is convex on $(0,infty)$, so Jensen's inequality
$$mathrm{E}left[,logleft(1+tfrac{1}{Y^2}right)right]geq logleft(1+tfrac{1}{mathrm{E}[Y]^2}right)$$
holds for any positive random variable $Y$. Letting $Y=sqrt{X}$, in particular we have
$$mathrm{E}left[,logleft(1+tfrac{1}{X}right)right]geq logleft(1+tfrac{1}{mathrm{E}[sqrt{X}]^2}right)$$
for any positive random variable $X$.
Now, let $X$ be a categorical variable taking on the $N$ positive values $x_0,x_1,ldots,x_{N-1}$ with equal probability $tfrac{1}{N}$, and suppose that
$$mathrm{E}[sqrt{X}]=frac{1}{N}sum_{i=0}^{N-1}sqrt{x_i}=frac{1}{N}text{.}$$
Then the inequality above is
$$frac{1}{N}sum_{i=0}^{N-1}logleft(1+tfrac{1}{x_i}right)geq log(1+N^2)text{;}$$
taking exponentials, we have shown that
$$boxed{sum_{i=0}^{N-1}sqrt{x_i}=1Rightarrowprod_{i=0}^{N-1}left(1+tfrac{1}{x_i}right)geq (1+N^2)^N }text{.}$$
OP's inequality is the case $N=2$.
answered Dec 31 '18 at 5:33
K B DaveK B Dave
3,706317
3,706317
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057254%2fif-x-y-sqrtx-sqrty-with-x-neq-y-then-1-frac1x1-frac1y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
I am missing something or the inequality is false for $x =y=1$ whike the equality is true?
$endgroup$
– Tito Eliatron
Dec 30 '18 at 22:51
1
$begingroup$
If $x=y=1$, $x-y=sqrt x-sqrt y$, but $(1+{1over x})(1+{1over y})=4$, which is not greater than or equal to 25.
$endgroup$
– Steve Kass
Dec 30 '18 at 22:51
1
$begingroup$
Tkae $;x=y=1;$ as an easy counter example....
$endgroup$
– DonAntonio
Dec 30 '18 at 22:51
2
$begingroup$
If you omit $x=y$ as solutions, then your condition is equivalent to $sqrt{x}+sqrt{y}=1$.
$endgroup$
– Cheerful Parsnip
Dec 30 '18 at 22:52
1
$begingroup$
@TitoEliatron you mean $sqrt x+sqrt y=1$
$endgroup$
– Mark Bennet
Dec 30 '18 at 23:04