Eigenvalues of Orthogonal Projection, using representative matrix
$begingroup$
Let $V$ an inner product vector space and $U$ a vector subspace of $V$. Consider the linear operator $Proj_{; U }:Vrightarrow V$ such that $forall vin V ; : ; Proj_{; U}(v) = Proj_{; U}V$, where $Proj_{; U}V$ is the orthogonal projection of the vector $v$ onto the subspace $U$. Find the representative matrix of $Proj_{; U}V$ and show that it's eigenvalues are $lambda_1= 0$ and $lambda_2 = 1$.
I've tried to define $B_v =left{v_1,ldots,v_n right} $ as a basis of $V$ and $B_u =left{u_1,ldots,u_m right} $ as an orthonormal basis of $U$. Then i got the matrix begin{equation}left[Proj_{;U} right]_{B_{v}} = begin{bmatrix}dfrac{langle v_1,u_1 rangle}{||u_1||^2} &ldots &dfrac{langle v_n,u_1rangle}{||u_1||^2}\ vdots&ddots&vdots\ dfrac{langle v_1,u_m rangle}{||u_m||^2}&ldots& {dfrac{langle{v_n,u_m}rangle}{||u_m||^2}} end{bmatrix} end{equation}
This doesn't convince me.
is this wrong? How can i find the eigenvalues of this transformation?
Thanks in advance-
linear-algebra matrices linear-transformations projection-matrices
$endgroup$
add a comment |
$begingroup$
Let $V$ an inner product vector space and $U$ a vector subspace of $V$. Consider the linear operator $Proj_{; U }:Vrightarrow V$ such that $forall vin V ; : ; Proj_{; U}(v) = Proj_{; U}V$, where $Proj_{; U}V$ is the orthogonal projection of the vector $v$ onto the subspace $U$. Find the representative matrix of $Proj_{; U}V$ and show that it's eigenvalues are $lambda_1= 0$ and $lambda_2 = 1$.
I've tried to define $B_v =left{v_1,ldots,v_n right} $ as a basis of $V$ and $B_u =left{u_1,ldots,u_m right} $ as an orthonormal basis of $U$. Then i got the matrix begin{equation}left[Proj_{;U} right]_{B_{v}} = begin{bmatrix}dfrac{langle v_1,u_1 rangle}{||u_1||^2} &ldots &dfrac{langle v_n,u_1rangle}{||u_1||^2}\ vdots&ddots&vdots\ dfrac{langle v_1,u_m rangle}{||u_m||^2}&ldots& {dfrac{langle{v_n,u_m}rangle}{||u_m||^2}} end{bmatrix} end{equation}
This doesn't convince me.
is this wrong? How can i find the eigenvalues of this transformation?
Thanks in advance-
linear-algebra matrices linear-transformations projection-matrices
$endgroup$
$begingroup$
Hint: Find a basis of $V$ in which the matrix is diagonal.
$endgroup$
– amd
Dec 30 '18 at 21:39
add a comment |
$begingroup$
Let $V$ an inner product vector space and $U$ a vector subspace of $V$. Consider the linear operator $Proj_{; U }:Vrightarrow V$ such that $forall vin V ; : ; Proj_{; U}(v) = Proj_{; U}V$, where $Proj_{; U}V$ is the orthogonal projection of the vector $v$ onto the subspace $U$. Find the representative matrix of $Proj_{; U}V$ and show that it's eigenvalues are $lambda_1= 0$ and $lambda_2 = 1$.
I've tried to define $B_v =left{v_1,ldots,v_n right} $ as a basis of $V$ and $B_u =left{u_1,ldots,u_m right} $ as an orthonormal basis of $U$. Then i got the matrix begin{equation}left[Proj_{;U} right]_{B_{v}} = begin{bmatrix}dfrac{langle v_1,u_1 rangle}{||u_1||^2} &ldots &dfrac{langle v_n,u_1rangle}{||u_1||^2}\ vdots&ddots&vdots\ dfrac{langle v_1,u_m rangle}{||u_m||^2}&ldots& {dfrac{langle{v_n,u_m}rangle}{||u_m||^2}} end{bmatrix} end{equation}
This doesn't convince me.
is this wrong? How can i find the eigenvalues of this transformation?
Thanks in advance-
linear-algebra matrices linear-transformations projection-matrices
$endgroup$
Let $V$ an inner product vector space and $U$ a vector subspace of $V$. Consider the linear operator $Proj_{; U }:Vrightarrow V$ such that $forall vin V ; : ; Proj_{; U}(v) = Proj_{; U}V$, where $Proj_{; U}V$ is the orthogonal projection of the vector $v$ onto the subspace $U$. Find the representative matrix of $Proj_{; U}V$ and show that it's eigenvalues are $lambda_1= 0$ and $lambda_2 = 1$.
I've tried to define $B_v =left{v_1,ldots,v_n right} $ as a basis of $V$ and $B_u =left{u_1,ldots,u_m right} $ as an orthonormal basis of $U$. Then i got the matrix begin{equation}left[Proj_{;U} right]_{B_{v}} = begin{bmatrix}dfrac{langle v_1,u_1 rangle}{||u_1||^2} &ldots &dfrac{langle v_n,u_1rangle}{||u_1||^2}\ vdots&ddots&vdots\ dfrac{langle v_1,u_m rangle}{||u_m||^2}&ldots& {dfrac{langle{v_n,u_m}rangle}{||u_m||^2}} end{bmatrix} end{equation}
This doesn't convince me.
is this wrong? How can i find the eigenvalues of this transformation?
Thanks in advance-
linear-algebra matrices linear-transformations projection-matrices
linear-algebra matrices linear-transformations projection-matrices
edited Dec 31 '18 at 3:46
Raúl Astete
asked Dec 30 '18 at 21:26
Raúl AsteteRaúl Astete
637
637
$begingroup$
Hint: Find a basis of $V$ in which the matrix is diagonal.
$endgroup$
– amd
Dec 30 '18 at 21:39
add a comment |
$begingroup$
Hint: Find a basis of $V$ in which the matrix is diagonal.
$endgroup$
– amd
Dec 30 '18 at 21:39
$begingroup$
Hint: Find a basis of $V$ in which the matrix is diagonal.
$endgroup$
– amd
Dec 30 '18 at 21:39
$begingroup$
Hint: Find a basis of $V$ in which the matrix is diagonal.
$endgroup$
– amd
Dec 30 '18 at 21:39
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
As you wrote, let ${u_1,ldots,u_m}$ be an orthonormal basis if $U$. Add vectors $v_1,ldots,v_l$ to it so that $B={u_1,ldots,u_m,v_1,ldots,v_l}$ is an orthonormal basis of $V$. Then the matrix of $operatorname{Proj}_U$ with respect to this basis is$$begin{bmatrix}operatorname{Id}_m&0\0&0_lend{bmatrix}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057217%2feigenvalues-of-orthogonal-projection-using-representative-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you wrote, let ${u_1,ldots,u_m}$ be an orthonormal basis if $U$. Add vectors $v_1,ldots,v_l$ to it so that $B={u_1,ldots,u_m,v_1,ldots,v_l}$ is an orthonormal basis of $V$. Then the matrix of $operatorname{Proj}_U$ with respect to this basis is$$begin{bmatrix}operatorname{Id}_m&0\0&0_lend{bmatrix}.$$
$endgroup$
add a comment |
$begingroup$
As you wrote, let ${u_1,ldots,u_m}$ be an orthonormal basis if $U$. Add vectors $v_1,ldots,v_l$ to it so that $B={u_1,ldots,u_m,v_1,ldots,v_l}$ is an orthonormal basis of $V$. Then the matrix of $operatorname{Proj}_U$ with respect to this basis is$$begin{bmatrix}operatorname{Id}_m&0\0&0_lend{bmatrix}.$$
$endgroup$
add a comment |
$begingroup$
As you wrote, let ${u_1,ldots,u_m}$ be an orthonormal basis if $U$. Add vectors $v_1,ldots,v_l$ to it so that $B={u_1,ldots,u_m,v_1,ldots,v_l}$ is an orthonormal basis of $V$. Then the matrix of $operatorname{Proj}_U$ with respect to this basis is$$begin{bmatrix}operatorname{Id}_m&0\0&0_lend{bmatrix}.$$
$endgroup$
As you wrote, let ${u_1,ldots,u_m}$ be an orthonormal basis if $U$. Add vectors $v_1,ldots,v_l$ to it so that $B={u_1,ldots,u_m,v_1,ldots,v_l}$ is an orthonormal basis of $V$. Then the matrix of $operatorname{Proj}_U$ with respect to this basis is$$begin{bmatrix}operatorname{Id}_m&0\0&0_lend{bmatrix}.$$
answered Dec 30 '18 at 21:40
José Carlos SantosJosé Carlos Santos
177k24138251
177k24138251
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057217%2feigenvalues-of-orthogonal-projection-using-representative-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: Find a basis of $V$ in which the matrix is diagonal.
$endgroup$
– amd
Dec 30 '18 at 21:39