Denote $f(x)=int_x^{x+1}cos t^2 {rm d}t.$Prove $limlimits_{x to +infty}f(x)=0.$












3












$begingroup$


Problem



Denote $$f(x)=int_x^{x+1}cos t^2 {rm d}t.$$Prove $limlimits_{x to +infty}f(x)=0.$



Proof



Assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=frac{1}{2sqrt{xi}}int_{x^2}^{(x+1)^2}cos u{rm d}u\
&=frac{sin(x+1)^2-sin x^2}{2sqrt{xi}},
end{align*}

where $x^2 leq xileq (x+1)^2$. Further,
$$0leq |f(x)|leq frac{|sin(x+1)^2|+|sin x^2|}{2sqrt{xi}}leq frac{1}{sqrt{xi}}leq frac{1}{x}to 0(x to +infty),$$
which implies $f(x)to 0(x to +infty)$, according to the squeeze theorem.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
    $endgroup$
    – Surb
    Dec 26 '18 at 9:34








  • 3




    $begingroup$
    The proof is not right, because $cos u$ under integral does not save sign
    $endgroup$
    – Minz
    Dec 26 '18 at 9:40










  • $begingroup$
    @MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
    $endgroup$
    – mengdie1982
    Dec 26 '18 at 9:45










  • $begingroup$
    @mengdie1982 OK it changes things
    $endgroup$
    – Minz
    Dec 26 '18 at 9:57
















3












$begingroup$


Problem



Denote $$f(x)=int_x^{x+1}cos t^2 {rm d}t.$$Prove $limlimits_{x to +infty}f(x)=0.$



Proof



Assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=frac{1}{2sqrt{xi}}int_{x^2}^{(x+1)^2}cos u{rm d}u\
&=frac{sin(x+1)^2-sin x^2}{2sqrt{xi}},
end{align*}

where $x^2 leq xileq (x+1)^2$. Further,
$$0leq |f(x)|leq frac{|sin(x+1)^2|+|sin x^2|}{2sqrt{xi}}leq frac{1}{sqrt{xi}}leq frac{1}{x}to 0(x to +infty),$$
which implies $f(x)to 0(x to +infty)$, according to the squeeze theorem.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
    $endgroup$
    – Surb
    Dec 26 '18 at 9:34








  • 3




    $begingroup$
    The proof is not right, because $cos u$ under integral does not save sign
    $endgroup$
    – Minz
    Dec 26 '18 at 9:40










  • $begingroup$
    @MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
    $endgroup$
    – mengdie1982
    Dec 26 '18 at 9:45










  • $begingroup$
    @mengdie1982 OK it changes things
    $endgroup$
    – Minz
    Dec 26 '18 at 9:57














3












3








3


1



$begingroup$


Problem



Denote $$f(x)=int_x^{x+1}cos t^2 {rm d}t.$$Prove $limlimits_{x to +infty}f(x)=0.$



Proof



Assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=frac{1}{2sqrt{xi}}int_{x^2}^{(x+1)^2}cos u{rm d}u\
&=frac{sin(x+1)^2-sin x^2}{2sqrt{xi}},
end{align*}

where $x^2 leq xileq (x+1)^2$. Further,
$$0leq |f(x)|leq frac{|sin(x+1)^2|+|sin x^2|}{2sqrt{xi}}leq frac{1}{sqrt{xi}}leq frac{1}{x}to 0(x to +infty),$$
which implies $f(x)to 0(x to +infty)$, according to the squeeze theorem.










share|cite|improve this question









$endgroup$




Problem



Denote $$f(x)=int_x^{x+1}cos t^2 {rm d}t.$$Prove $limlimits_{x to +infty}f(x)=0.$



Proof



Assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=frac{1}{2sqrt{xi}}int_{x^2}^{(x+1)^2}cos u{rm d}u\
&=frac{sin(x+1)^2-sin x^2}{2sqrt{xi}},
end{align*}

where $x^2 leq xileq (x+1)^2$. Further,
$$0leq |f(x)|leq frac{|sin(x+1)^2|+|sin x^2|}{2sqrt{xi}}leq frac{1}{sqrt{xi}}leq frac{1}{x}to 0(x to +infty),$$
which implies $f(x)to 0(x to +infty)$, according to the squeeze theorem.







proof-verification






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 26 '18 at 9:06









mengdie1982mengdie1982

4,974618




4,974618












  • $begingroup$
    The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
    $endgroup$
    – Surb
    Dec 26 '18 at 9:34








  • 3




    $begingroup$
    The proof is not right, because $cos u$ under integral does not save sign
    $endgroup$
    – Minz
    Dec 26 '18 at 9:40










  • $begingroup$
    @MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
    $endgroup$
    – mengdie1982
    Dec 26 '18 at 9:45










  • $begingroup$
    @mengdie1982 OK it changes things
    $endgroup$
    – Minz
    Dec 26 '18 at 9:57


















  • $begingroup$
    The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
    $endgroup$
    – Surb
    Dec 26 '18 at 9:34








  • 3




    $begingroup$
    The proof is not right, because $cos u$ under integral does not save sign
    $endgroup$
    – Minz
    Dec 26 '18 at 9:40










  • $begingroup$
    @MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
    $endgroup$
    – mengdie1982
    Dec 26 '18 at 9:45










  • $begingroup$
    @mengdie1982 OK it changes things
    $endgroup$
    – Minz
    Dec 26 '18 at 9:57
















$begingroup$
The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
$endgroup$
– Surb
Dec 26 '18 at 9:34






$begingroup$
The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
$endgroup$
– Surb
Dec 26 '18 at 9:34






3




3




$begingroup$
The proof is not right, because $cos u$ under integral does not save sign
$endgroup$
– Minz
Dec 26 '18 at 9:40




$begingroup$
The proof is not right, because $cos u$ under integral does not save sign
$endgroup$
– Minz
Dec 26 '18 at 9:40












$begingroup$
@MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
$endgroup$
– mengdie1982
Dec 26 '18 at 9:45




$begingroup$
@MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
$endgroup$
– mengdie1982
Dec 26 '18 at 9:45












$begingroup$
@mengdie1982 OK it changes things
$endgroup$
– Minz
Dec 26 '18 at 9:57




$begingroup$
@mengdie1982 OK it changes things
$endgroup$
– Minz
Dec 26 '18 at 9:57










2 Answers
2






active

oldest

votes


















1












$begingroup$

Alternative solution:

Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.

According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
    $endgroup$
    – DonAntonio
    Dec 26 '18 at 10:02












  • $begingroup$
    @DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
    $endgroup$
    – Gabriel Romon
    Dec 26 '18 at 11:10





















1












$begingroup$

Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.



Another Proof



Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
&=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
&=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
end{align*}

Thus
begin{align*}
|f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
&leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
&=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
&=frac{1}{x}to 0(x to +infty),
end{align*}

which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052775%2fdenote-fx-int-xx1-cos-t2-rm-dt-prove-lim-limits-x-to-inftyf%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Alternative solution:

    Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
    we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.

    According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
    we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
    Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
      $endgroup$
      – DonAntonio
      Dec 26 '18 at 10:02












    • $begingroup$
      @DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
      $endgroup$
      – Gabriel Romon
      Dec 26 '18 at 11:10


















    1












    $begingroup$

    Alternative solution:

    Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
    we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.

    According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
    we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
    Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
      $endgroup$
      – DonAntonio
      Dec 26 '18 at 10:02












    • $begingroup$
      @DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
      $endgroup$
      – Gabriel Romon
      Dec 26 '18 at 11:10
















    1












    1








    1





    $begingroup$

    Alternative solution:

    Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
    we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.

    According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
    we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
    Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.






    share|cite|improve this answer











    $endgroup$



    Alternative solution:

    Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
    we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.

    According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
    we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
    Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 26 '18 at 10:08

























    answered Dec 26 '18 at 9:52









    Kemono ChenKemono Chen

    3,1991844




    3,1991844












    • $begingroup$
      I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
      $endgroup$
      – DonAntonio
      Dec 26 '18 at 10:02












    • $begingroup$
      @DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
      $endgroup$
      – Gabriel Romon
      Dec 26 '18 at 11:10




















    • $begingroup$
      I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
      $endgroup$
      – DonAntonio
      Dec 26 '18 at 10:02












    • $begingroup$
      @DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
      $endgroup$
      – Gabriel Romon
      Dec 26 '18 at 11:10


















    $begingroup$
    I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
    $endgroup$
    – DonAntonio
    Dec 26 '18 at 10:02






    $begingroup$
    I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
    $endgroup$
    – DonAntonio
    Dec 26 '18 at 10:02














    $begingroup$
    @DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
    $endgroup$
    – Gabriel Romon
    Dec 26 '18 at 11:10






    $begingroup$
    @DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
    $endgroup$
    – Gabriel Romon
    Dec 26 '18 at 11:10













    1












    $begingroup$

    Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.



    Another Proof



    Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
    begin{align*}
    f(x)&=int_x^{x+1}cos t^2 {rm d}t\
    &=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
    &=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
    &=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
    &=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
    end{align*}

    Thus
    begin{align*}
    |f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
    &leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
    &=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
    &=frac{1}{x}to 0(x to +infty),
    end{align*}

    which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.



      Another Proof



      Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
      begin{align*}
      f(x)&=int_x^{x+1}cos t^2 {rm d}t\
      &=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
      &=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
      &=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
      &=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
      end{align*}

      Thus
      begin{align*}
      |f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
      &leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
      &=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
      &=frac{1}{x}to 0(x to +infty),
      end{align*}

      which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.



        Another Proof



        Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
        begin{align*}
        f(x)&=int_x^{x+1}cos t^2 {rm d}t\
        &=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
        &=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
        &=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
        &=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
        end{align*}

        Thus
        begin{align*}
        |f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
        &leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
        &=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
        &=frac{1}{x}to 0(x to +infty),
        end{align*}

        which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.






        share|cite|improve this answer











        $endgroup$



        Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.



        Another Proof



        Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
        begin{align*}
        f(x)&=int_x^{x+1}cos t^2 {rm d}t\
        &=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
        &=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
        &=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
        &=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
        end{align*}

        Thus
        begin{align*}
        |f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
        &leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
        &=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
        &=frac{1}{x}to 0(x to +infty),
        end{align*}

        which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 26 '18 at 12:51

























        answered Dec 26 '18 at 10:28









        mengdie1982mengdie1982

        4,974618




        4,974618






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052775%2fdenote-fx-int-xx1-cos-t2-rm-dt-prove-lim-limits-x-to-inftyf%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Le Mesnil-Réaume

            Ida-Boy-Ed-Garten

            web3.py web3.isConnected() returns false always