Denote $f(x)=int_x^{x+1}cos t^2 {rm d}t.$Prove $limlimits_{x to +infty}f(x)=0.$
$begingroup$
Problem
Denote $$f(x)=int_x^{x+1}cos t^2 {rm d}t.$$Prove $limlimits_{x to +infty}f(x)=0.$
Proof
Assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=frac{1}{2sqrt{xi}}int_{x^2}^{(x+1)^2}cos u{rm d}u\
&=frac{sin(x+1)^2-sin x^2}{2sqrt{xi}},
end{align*}
where $x^2 leq xileq (x+1)^2$. Further,
$$0leq |f(x)|leq frac{|sin(x+1)^2|+|sin x^2|}{2sqrt{xi}}leq frac{1}{sqrt{xi}}leq frac{1}{x}to 0(x to +infty),$$
which implies $f(x)to 0(x to +infty)$, according to the squeeze theorem.
proof-verification
$endgroup$
add a comment |
$begingroup$
Problem
Denote $$f(x)=int_x^{x+1}cos t^2 {rm d}t.$$Prove $limlimits_{x to +infty}f(x)=0.$
Proof
Assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=frac{1}{2sqrt{xi}}int_{x^2}^{(x+1)^2}cos u{rm d}u\
&=frac{sin(x+1)^2-sin x^2}{2sqrt{xi}},
end{align*}
where $x^2 leq xileq (x+1)^2$. Further,
$$0leq |f(x)|leq frac{|sin(x+1)^2|+|sin x^2|}{2sqrt{xi}}leq frac{1}{sqrt{xi}}leq frac{1}{x}to 0(x to +infty),$$
which implies $f(x)to 0(x to +infty)$, according to the squeeze theorem.
proof-verification
$endgroup$
$begingroup$
The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
$endgroup$
– Surb
Dec 26 '18 at 9:34
3
$begingroup$
The proof is not right, because $cos u$ under integral does not save sign
$endgroup$
– Minz
Dec 26 '18 at 9:40
$begingroup$
@MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
$endgroup$
– mengdie1982
Dec 26 '18 at 9:45
$begingroup$
@mengdie1982 OK it changes things
$endgroup$
– Minz
Dec 26 '18 at 9:57
add a comment |
$begingroup$
Problem
Denote $$f(x)=int_x^{x+1}cos t^2 {rm d}t.$$Prove $limlimits_{x to +infty}f(x)=0.$
Proof
Assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=frac{1}{2sqrt{xi}}int_{x^2}^{(x+1)^2}cos u{rm d}u\
&=frac{sin(x+1)^2-sin x^2}{2sqrt{xi}},
end{align*}
where $x^2 leq xileq (x+1)^2$. Further,
$$0leq |f(x)|leq frac{|sin(x+1)^2|+|sin x^2|}{2sqrt{xi}}leq frac{1}{sqrt{xi}}leq frac{1}{x}to 0(x to +infty),$$
which implies $f(x)to 0(x to +infty)$, according to the squeeze theorem.
proof-verification
$endgroup$
Problem
Denote $$f(x)=int_x^{x+1}cos t^2 {rm d}t.$$Prove $limlimits_{x to +infty}f(x)=0.$
Proof
Assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=frac{1}{2sqrt{xi}}int_{x^2}^{(x+1)^2}cos u{rm d}u\
&=frac{sin(x+1)^2-sin x^2}{2sqrt{xi}},
end{align*}
where $x^2 leq xileq (x+1)^2$. Further,
$$0leq |f(x)|leq frac{|sin(x+1)^2|+|sin x^2|}{2sqrt{xi}}leq frac{1}{sqrt{xi}}leq frac{1}{x}to 0(x to +infty),$$
which implies $f(x)to 0(x to +infty)$, according to the squeeze theorem.
proof-verification
proof-verification
asked Dec 26 '18 at 9:06
mengdie1982mengdie1982
4,974618
4,974618
$begingroup$
The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
$endgroup$
– Surb
Dec 26 '18 at 9:34
3
$begingroup$
The proof is not right, because $cos u$ under integral does not save sign
$endgroup$
– Minz
Dec 26 '18 at 9:40
$begingroup$
@MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
$endgroup$
– mengdie1982
Dec 26 '18 at 9:45
$begingroup$
@mengdie1982 OK it changes things
$endgroup$
– Minz
Dec 26 '18 at 9:57
add a comment |
$begingroup$
The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
$endgroup$
– Surb
Dec 26 '18 at 9:34
3
$begingroup$
The proof is not right, because $cos u$ under integral does not save sign
$endgroup$
– Minz
Dec 26 '18 at 9:40
$begingroup$
@MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
$endgroup$
– mengdie1982
Dec 26 '18 at 9:45
$begingroup$
@mengdie1982 OK it changes things
$endgroup$
– Minz
Dec 26 '18 at 9:57
$begingroup$
The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
$endgroup$
– Surb
Dec 26 '18 at 9:34
$begingroup$
The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
$endgroup$
– Surb
Dec 26 '18 at 9:34
3
3
$begingroup$
The proof is not right, because $cos u$ under integral does not save sign
$endgroup$
– Minz
Dec 26 '18 at 9:40
$begingroup$
The proof is not right, because $cos u$ under integral does not save sign
$endgroup$
– Minz
Dec 26 '18 at 9:40
$begingroup$
@MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
$endgroup$
– mengdie1982
Dec 26 '18 at 9:45
$begingroup$
@MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
$endgroup$
– mengdie1982
Dec 26 '18 at 9:45
$begingroup$
@mengdie1982 OK it changes things
$endgroup$
– Minz
Dec 26 '18 at 9:57
$begingroup$
@mengdie1982 OK it changes things
$endgroup$
– Minz
Dec 26 '18 at 9:57
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Alternative solution:
Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.
According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.
$endgroup$
$begingroup$
I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
$endgroup$
– DonAntonio
Dec 26 '18 at 10:02
$begingroup$
@DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
$endgroup$
– Gabriel Romon
Dec 26 '18 at 11:10
add a comment |
$begingroup$
Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.
Another Proof
Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
&=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
&=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
end{align*}
Thus
begin{align*}
|f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
&leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
&=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
&=frac{1}{x}to 0(x to +infty),
end{align*}
which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052775%2fdenote-fx-int-xx1-cos-t2-rm-dt-prove-lim-limits-x-to-inftyf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Alternative solution:
Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.
According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.
$endgroup$
$begingroup$
I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
$endgroup$
– DonAntonio
Dec 26 '18 at 10:02
$begingroup$
@DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
$endgroup$
– Gabriel Romon
Dec 26 '18 at 11:10
add a comment |
$begingroup$
Alternative solution:
Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.
According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.
$endgroup$
$begingroup$
I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
$endgroup$
– DonAntonio
Dec 26 '18 at 10:02
$begingroup$
@DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
$endgroup$
– Gabriel Romon
Dec 26 '18 at 11:10
add a comment |
$begingroup$
Alternative solution:
Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.
According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.
$endgroup$
Alternative solution:
Denote $$g(x)=int_x^infty cos t^2dt (x>0),$$
we can actually prove this definition is valid (integral converges) using substitution $t^2=u$ and Dirichlet's test.
According to the definition of improper integral: $$lim_{ytoinfty}int_x^ycos t^2dt=int_x^inftycos t^2dt,$$
we can deduce $$lim_{xtoinfty}g(x)=int_a^inftycos t^2dt-lim_{xtoinfty}int_a^xcos t^2dt=int_a^inftycos t^2dt-int_a^inftycos t^2dt=0.$$
Therefore $lim_{xtoinfty}f(x)=lim_{xtoinfty}g(x+1)-g(x)=0$.
edited Dec 26 '18 at 10:08
answered Dec 26 '18 at 9:52
Kemono ChenKemono Chen
3,1991844
3,1991844
$begingroup$
I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
$endgroup$
– DonAntonio
Dec 26 '18 at 10:02
$begingroup$
@DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
$endgroup$
– Gabriel Romon
Dec 26 '18 at 11:10
add a comment |
$begingroup$
I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
$endgroup$
– DonAntonio
Dec 26 '18 at 10:02
$begingroup$
@DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
$endgroup$
– Gabriel Romon
Dec 26 '18 at 11:10
$begingroup$
I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
$endgroup$
– DonAntonio
Dec 26 '18 at 10:02
$begingroup$
I don't get it: it seems to be that for you it is obvious the left limit in the middle $;(int_x^y;)$ is zero. Why? What I mean: from what exactly you can deduce that $;lim g(x)=0;$ ?
$endgroup$
– DonAntonio
Dec 26 '18 at 10:02
$begingroup$
@DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
$endgroup$
– Gabriel Romon
Dec 26 '18 at 11:10
$begingroup$
@DonAntonio The remainder (tail) of a convergent improper integral goes to $0$. That's a well-known result that Kemono re-proved.
$endgroup$
– Gabriel Romon
Dec 26 '18 at 11:10
add a comment |
$begingroup$
Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.
Another Proof
Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
&=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
&=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
end{align*}
Thus
begin{align*}
|f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
&leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
&=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
&=frac{1}{x}to 0(x to +infty),
end{align*}
which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.
$endgroup$
add a comment |
$begingroup$
Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.
Another Proof
Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
&=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
&=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
end{align*}
Thus
begin{align*}
|f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
&leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
&=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
&=frac{1}{x}to 0(x to +infty),
end{align*}
which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.
$endgroup$
add a comment |
$begingroup$
Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.
Another Proof
Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
&=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
&=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
end{align*}
Thus
begin{align*}
|f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
&leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
&=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
&=frac{1}{x}to 0(x to +infty),
end{align*}
which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.
$endgroup$
Thanks to @MinzMin, I find there exists a fatal mistake in my former proof. Since $cos u$ does not keep its sign over the integral interval $[x^2,(x+1)^2]$, we can not apply such a kind of integral mean value theorem. Now, I modify that and give another one.
Another Proof
Likewise, assume $x>0$. Making a substitution $t=sqrt{u}$,we have ${rm d}t=dfrac{1}{2sqrt{u}}{rm d}u.$ Therefore,
begin{align*}
f(x)&=int_x^{x+1}cos t^2 {rm d}t\
&=int_{x^2}^{(x+1)^2} frac{cos u}{2sqrt{u}}{rm d}u\
&=int_{x^2}^{(x+1)^2}frac{1}{2sqrt{u}}{rm d}(sin u)\
&=frac{sin u}{2sqrt{u}}bigg|_{x^2}^{(x+1)^2}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u\
&=frac{sin(x+1)^2}{2(x+1)}-frac{sin x^2}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}sin u{rm d}u.\
end{align*}
Thus
begin{align*}
|f(x)|&leq frac{|sin(x+1)^2|}{2(x+1)}+frac{|sin x^2|}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}|sin u|{rm d}u\
&leq frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}int_{x^2}^{(x+1)^2}u^{-frac{3}{2}}{rm d}u\
&=frac{1}{2(x+1)}+frac{1}{2x}+frac{1}{4}cdot left[-frac{2}{sqrt{u}}right]_{x^2}^{(x+1)^2}\
&=frac{1}{x}to 0(x to +infty),
end{align*}
which implies $|f(x)|to 0$ according to the squeeze theorem. It follows that $f(x) to 0$.
edited Dec 26 '18 at 12:51
answered Dec 26 '18 at 10:28
mengdie1982mengdie1982
4,974618
4,974618
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052775%2fdenote-fx-int-xx1-cos-t2-rm-dt-prove-lim-limits-x-to-inftyf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The equality $f(x)=...=frac{1}{sqrtxi}int...$ should be $leq$.
$endgroup$
– Surb
Dec 26 '18 at 9:34
3
$begingroup$
The proof is not right, because $cos u$ under integral does not save sign
$endgroup$
– Minz
Dec 26 '18 at 9:40
$begingroup$
@MinzMin yes,you're right! but can we add a absolute value mark from the beginning?
$endgroup$
– mengdie1982
Dec 26 '18 at 9:45
$begingroup$
@mengdie1982 OK it changes things
$endgroup$
– Minz
Dec 26 '18 at 9:57