Problem trying to represent growth of a capital with spirals
$begingroup$
I am trying to represent with spirals the growth of a capital as the Bank pays interest.
The analogy would be that the capital is represented by the radius and the passage of time by the motion of the circle with constant angular speed.
The Archimedes spiral (where radius is growing in arithmetic progression) would be the equivalent of simple interest and the logarithmic spiral would represent compound interest.
Going quantitative, I have doubts. I have tried to adapt the formulas as follows (I am stipulating that one turn is 1 year):
SIMPLE INTEREST (Archimides spiral):
$r(theta ) = atheta
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaeqiUdeha
% aa!3DBF!
$
would become
$r(theta )[{rm{final capital}}] = {rm{initial capital + a[yearly interest]}}frac{theta }{{2pi }}{rm{[fraction or multiple of year elapsed]}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaGGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaac2facqGH9aqpcaqGPbGaaeOBaiaabMgacaqG
% 0bGaaeyAaiaabggacaqGSbGaaeiiaiaabogacaqGHbGaaeiCaiaabM
% gacaqG0bGaaeyyaiaabYgacaqGRaGaaeyyaiaabUfacaqG5bGaaeyz
% aiaabggacaqGYbGaaeiBaiaabMhacaqGGaGaaeyAaiaab6gacaqG0b
% GaaeyzaiaabkhacaqGLbGaae4CaiaabshacaqGDbWaaSaaaeaacqaH
% 4oqCaeaacaaIYaGaeqiWdahaaiaabUfacaqGMbGaaeOCaiaabggaca
% qGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOCaiaa
% bccacaqGTbGaaeyDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaae
% yzaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaaeyzaiaabggacaqG
% YbGaaeiiaiaabwgacaqGSbGaaeyyaiaabchacaqGZbGaaeyzaiaabs
% gacaqGDbaaaa!8D58!
$
COMPOUND INTEREST (Logarithmic spiral):
$r(theta ) = a{e^{theta b}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaamyzamaa
% CaaaleqabaGaeqiUdeNaamOyaaaaaaa!3FBD!
$
would become
$r(theta ){rm{[final capital]}} = a[{rm{initial capital]}}{e^{b[{rm{yearly interest rate]}}frac{theta }{{2pi }}[{rm{fraction or multiple of year elapsed]}}}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaqGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaab2facqGH9aqpcaWGHbGaai4waiaabMgacaqG
% UbGaaeyAaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaae4yaiaabg
% gacaqGWbGaaeyAaiaabshacaqGHbGaaeiBaiaab2facaWGLbWaaWba
% aSqabeaacaWGIbGaai4waiaabMhacaqGLbGaaeyyaiaabkhacaqGSb
% GaaeyEaiaabccacaqGPbGaaeOBaiaabshacaqGLbGaaeOCaiaabwga
% caqGZbGaaeiDaiaabccacaqGYbGaaeyyaiaabshacaqGLbGaaeyxam
% aalaaabaGaeqiUdehabaGaaGOmaiabec8aWbaacaGGBbGaaeOzaiaa
% bkhacaqGHbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae
% 4BaiaabkhacaqGGaGaaeyBaiaabwhacaqGSbGaaeiDaiaabMgacaqG
% WbGaaeiBaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabw
% gacaqGHbGaaeOCaiaabccacaqGLbGaaeiBaiaabggacaqGWbGaae4C
% aiaabwgacaqGKbGaaeyxaaaaaaa!94C4!
$
Would this adaptation work, is this the right way to do it?
trigonometry exponential-function
$endgroup$
add a comment |
$begingroup$
I am trying to represent with spirals the growth of a capital as the Bank pays interest.
The analogy would be that the capital is represented by the radius and the passage of time by the motion of the circle with constant angular speed.
The Archimedes spiral (where radius is growing in arithmetic progression) would be the equivalent of simple interest and the logarithmic spiral would represent compound interest.
Going quantitative, I have doubts. I have tried to adapt the formulas as follows (I am stipulating that one turn is 1 year):
SIMPLE INTEREST (Archimides spiral):
$r(theta ) = atheta
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaeqiUdeha
% aa!3DBF!
$
would become
$r(theta )[{rm{final capital}}] = {rm{initial capital + a[yearly interest]}}frac{theta }{{2pi }}{rm{[fraction or multiple of year elapsed]}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaGGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaac2facqGH9aqpcaqGPbGaaeOBaiaabMgacaqG
% 0bGaaeyAaiaabggacaqGSbGaaeiiaiaabogacaqGHbGaaeiCaiaabM
% gacaqG0bGaaeyyaiaabYgacaqGRaGaaeyyaiaabUfacaqG5bGaaeyz
% aiaabggacaqGYbGaaeiBaiaabMhacaqGGaGaaeyAaiaab6gacaqG0b
% GaaeyzaiaabkhacaqGLbGaae4CaiaabshacaqGDbWaaSaaaeaacqaH
% 4oqCaeaacaaIYaGaeqiWdahaaiaabUfacaqGMbGaaeOCaiaabggaca
% qGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOCaiaa
% bccacaqGTbGaaeyDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaae
% yzaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaaeyzaiaabggacaqG
% YbGaaeiiaiaabwgacaqGSbGaaeyyaiaabchacaqGZbGaaeyzaiaabs
% gacaqGDbaaaa!8D58!
$
COMPOUND INTEREST (Logarithmic spiral):
$r(theta ) = a{e^{theta b}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaamyzamaa
% CaaaleqabaGaeqiUdeNaamOyaaaaaaa!3FBD!
$
would become
$r(theta ){rm{[final capital]}} = a[{rm{initial capital]}}{e^{b[{rm{yearly interest rate]}}frac{theta }{{2pi }}[{rm{fraction or multiple of year elapsed]}}}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaqGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaab2facqGH9aqpcaWGHbGaai4waiaabMgacaqG
% UbGaaeyAaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaae4yaiaabg
% gacaqGWbGaaeyAaiaabshacaqGHbGaaeiBaiaab2facaWGLbWaaWba
% aSqabeaacaWGIbGaai4waiaabMhacaqGLbGaaeyyaiaabkhacaqGSb
% GaaeyEaiaabccacaqGPbGaaeOBaiaabshacaqGLbGaaeOCaiaabwga
% caqGZbGaaeiDaiaabccacaqGYbGaaeyyaiaabshacaqGLbGaaeyxam
% aalaaabaGaeqiUdehabaGaaGOmaiabec8aWbaacaGGBbGaaeOzaiaa
% bkhacaqGHbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae
% 4BaiaabkhacaqGGaGaaeyBaiaabwhacaqGSbGaaeiDaiaabMgacaqG
% WbGaaeiBaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabw
% gacaqGHbGaaeOCaiaabccacaqGLbGaaeiBaiaabggacaqGWbGaae4C
% aiaabwgacaqGKbGaaeyxaaaaaaa!94C4!
$
Would this adaptation work, is this the right way to do it?
trigonometry exponential-function
$endgroup$
$begingroup$
You can represent pretty much anything with anything. Whether it will do any good is another question.
$endgroup$
– Ivan Neretin
Dec 26 '18 at 12:07
$begingroup$
No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
$endgroup$
– Sierra
Dec 26 '18 at 12:14
add a comment |
$begingroup$
I am trying to represent with spirals the growth of a capital as the Bank pays interest.
The analogy would be that the capital is represented by the radius and the passage of time by the motion of the circle with constant angular speed.
The Archimedes spiral (where radius is growing in arithmetic progression) would be the equivalent of simple interest and the logarithmic spiral would represent compound interest.
Going quantitative, I have doubts. I have tried to adapt the formulas as follows (I am stipulating that one turn is 1 year):
SIMPLE INTEREST (Archimides spiral):
$r(theta ) = atheta
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaeqiUdeha
% aa!3DBF!
$
would become
$r(theta )[{rm{final capital}}] = {rm{initial capital + a[yearly interest]}}frac{theta }{{2pi }}{rm{[fraction or multiple of year elapsed]}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaGGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaac2facqGH9aqpcaqGPbGaaeOBaiaabMgacaqG
% 0bGaaeyAaiaabggacaqGSbGaaeiiaiaabogacaqGHbGaaeiCaiaabM
% gacaqG0bGaaeyyaiaabYgacaqGRaGaaeyyaiaabUfacaqG5bGaaeyz
% aiaabggacaqGYbGaaeiBaiaabMhacaqGGaGaaeyAaiaab6gacaqG0b
% GaaeyzaiaabkhacaqGLbGaae4CaiaabshacaqGDbWaaSaaaeaacqaH
% 4oqCaeaacaaIYaGaeqiWdahaaiaabUfacaqGMbGaaeOCaiaabggaca
% qGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOCaiaa
% bccacaqGTbGaaeyDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaae
% yzaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaaeyzaiaabggacaqG
% YbGaaeiiaiaabwgacaqGSbGaaeyyaiaabchacaqGZbGaaeyzaiaabs
% gacaqGDbaaaa!8D58!
$
COMPOUND INTEREST (Logarithmic spiral):
$r(theta ) = a{e^{theta b}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaamyzamaa
% CaaaleqabaGaeqiUdeNaamOyaaaaaaa!3FBD!
$
would become
$r(theta ){rm{[final capital]}} = a[{rm{initial capital]}}{e^{b[{rm{yearly interest rate]}}frac{theta }{{2pi }}[{rm{fraction or multiple of year elapsed]}}}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaqGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaab2facqGH9aqpcaWGHbGaai4waiaabMgacaqG
% UbGaaeyAaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaae4yaiaabg
% gacaqGWbGaaeyAaiaabshacaqGHbGaaeiBaiaab2facaWGLbWaaWba
% aSqabeaacaWGIbGaai4waiaabMhacaqGLbGaaeyyaiaabkhacaqGSb
% GaaeyEaiaabccacaqGPbGaaeOBaiaabshacaqGLbGaaeOCaiaabwga
% caqGZbGaaeiDaiaabccacaqGYbGaaeyyaiaabshacaqGLbGaaeyxam
% aalaaabaGaeqiUdehabaGaaGOmaiabec8aWbaacaGGBbGaaeOzaiaa
% bkhacaqGHbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae
% 4BaiaabkhacaqGGaGaaeyBaiaabwhacaqGSbGaaeiDaiaabMgacaqG
% WbGaaeiBaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabw
% gacaqGHbGaaeOCaiaabccacaqGLbGaaeiBaiaabggacaqGWbGaae4C
% aiaabwgacaqGKbGaaeyxaaaaaaa!94C4!
$
Would this adaptation work, is this the right way to do it?
trigonometry exponential-function
$endgroup$
I am trying to represent with spirals the growth of a capital as the Bank pays interest.
The analogy would be that the capital is represented by the radius and the passage of time by the motion of the circle with constant angular speed.
The Archimedes spiral (where radius is growing in arithmetic progression) would be the equivalent of simple interest and the logarithmic spiral would represent compound interest.
Going quantitative, I have doubts. I have tried to adapt the formulas as follows (I am stipulating that one turn is 1 year):
SIMPLE INTEREST (Archimides spiral):
$r(theta ) = atheta
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaeqiUdeha
% aa!3DBF!
$
would become
$r(theta )[{rm{final capital}}] = {rm{initial capital + a[yearly interest]}}frac{theta }{{2pi }}{rm{[fraction or multiple of year elapsed]}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaGGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaac2facqGH9aqpcaqGPbGaaeOBaiaabMgacaqG
% 0bGaaeyAaiaabggacaqGSbGaaeiiaiaabogacaqGHbGaaeiCaiaabM
% gacaqG0bGaaeyyaiaabYgacaqGRaGaaeyyaiaabUfacaqG5bGaaeyz
% aiaabggacaqGYbGaaeiBaiaabMhacaqGGaGaaeyAaiaab6gacaqG0b
% GaaeyzaiaabkhacaqGLbGaae4CaiaabshacaqGDbWaaSaaaeaacqaH
% 4oqCaeaacaaIYaGaeqiWdahaaiaabUfacaqGMbGaaeOCaiaabggaca
% qGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOCaiaa
% bccacaqGTbGaaeyDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaae
% yzaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaaeyzaiaabggacaqG
% YbGaaeiiaiaabwgacaqGSbGaaeyyaiaabchacaqGZbGaaeyzaiaabs
% gacaqGDbaaaa!8D58!
$
COMPOUND INTEREST (Logarithmic spiral):
$r(theta ) = a{e^{theta b}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaamyzamaa
% CaaaleqabaGaeqiUdeNaamOyaaaaaaa!3FBD!
$
would become
$r(theta ){rm{[final capital]}} = a[{rm{initial capital]}}{e^{b[{rm{yearly interest rate]}}frac{theta }{{2pi }}[{rm{fraction or multiple of year elapsed]}}}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaqGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaab2facqGH9aqpcaWGHbGaai4waiaabMgacaqG
% UbGaaeyAaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaae4yaiaabg
% gacaqGWbGaaeyAaiaabshacaqGHbGaaeiBaiaab2facaWGLbWaaWba
% aSqabeaacaWGIbGaai4waiaabMhacaqGLbGaaeyyaiaabkhacaqGSb
% GaaeyEaiaabccacaqGPbGaaeOBaiaabshacaqGLbGaaeOCaiaabwga
% caqGZbGaaeiDaiaabccacaqGYbGaaeyyaiaabshacaqGLbGaaeyxam
% aalaaabaGaeqiUdehabaGaaGOmaiabec8aWbaacaGGBbGaaeOzaiaa
% bkhacaqGHbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae
% 4BaiaabkhacaqGGaGaaeyBaiaabwhacaqGSbGaaeiDaiaabMgacaqG
% WbGaaeiBaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabw
% gacaqGHbGaaeOCaiaabccacaqGLbGaaeiBaiaabggacaqGWbGaae4C
% aiaabwgacaqGKbGaaeyxaaaaaaa!94C4!
$
Would this adaptation work, is this the right way to do it?
trigonometry exponential-function
trigonometry exponential-function
edited Dec 26 '18 at 17:05
Sierra
asked Dec 26 '18 at 8:46
SierraSierra
315
315
$begingroup$
You can represent pretty much anything with anything. Whether it will do any good is another question.
$endgroup$
– Ivan Neretin
Dec 26 '18 at 12:07
$begingroup$
No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
$endgroup$
– Sierra
Dec 26 '18 at 12:14
add a comment |
$begingroup$
You can represent pretty much anything with anything. Whether it will do any good is another question.
$endgroup$
– Ivan Neretin
Dec 26 '18 at 12:07
$begingroup$
No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
$endgroup$
– Sierra
Dec 26 '18 at 12:14
$begingroup$
You can represent pretty much anything with anything. Whether it will do any good is another question.
$endgroup$
– Ivan Neretin
Dec 26 '18 at 12:07
$begingroup$
You can represent pretty much anything with anything. Whether it will do any good is another question.
$endgroup$
– Ivan Neretin
Dec 26 '18 at 12:07
$begingroup$
No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
$endgroup$
– Sierra
Dec 26 '18 at 12:14
$begingroup$
No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
$endgroup$
– Sierra
Dec 26 '18 at 12:14
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052758%2fproblem-trying-to-represent-growth-of-a-capital-with-spirals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052758%2fproblem-trying-to-represent-growth-of-a-capital-with-spirals%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You can represent pretty much anything with anything. Whether it will do any good is another question.
$endgroup$
– Ivan Neretin
Dec 26 '18 at 12:07
$begingroup$
No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
$endgroup$
– Sierra
Dec 26 '18 at 12:14