Problem trying to represent growth of a capital with spirals












0












$begingroup$


I am trying to represent with spirals the growth of a capital as the Bank pays interest.



The analogy would be that the capital is represented by the radius and the passage of time by the motion of the circle with constant angular speed.



The Archimedes spiral (where radius is growing in arithmetic progression) would be the equivalent of simple interest and the logarithmic spiral would represent compound interest.



Going quantitative, I have doubts. I have tried to adapt the formulas as follows (I am stipulating that one turn is 1 year):



SIMPLE INTEREST (Archimides spiral):



$r(theta ) = atheta
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaeqiUdeha
% aa!3DBF!
$



would become



$r(theta )[{rm{final capital}}] = {rm{initial capital + a[yearly interest]}}frac{theta }{{2pi }}{rm{[fraction or multiple of year elapsed]}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaGGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaac2facqGH9aqpcaqGPbGaaeOBaiaabMgacaqG
% 0bGaaeyAaiaabggacaqGSbGaaeiiaiaabogacaqGHbGaaeiCaiaabM
% gacaqG0bGaaeyyaiaabYgacaqGRaGaaeyyaiaabUfacaqG5bGaaeyz
% aiaabggacaqGYbGaaeiBaiaabMhacaqGGaGaaeyAaiaab6gacaqG0b
% GaaeyzaiaabkhacaqGLbGaae4CaiaabshacaqGDbWaaSaaaeaacqaH
% 4oqCaeaacaaIYaGaeqiWdahaaiaabUfacaqGMbGaaeOCaiaabggaca
% qGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOCaiaa
% bccacaqGTbGaaeyDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaae
% yzaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaaeyzaiaabggacaqG
% YbGaaeiiaiaabwgacaqGSbGaaeyyaiaabchacaqGZbGaaeyzaiaabs
% gacaqGDbaaaa!8D58!
$



COMPOUND INTEREST (Logarithmic spiral):



$r(theta ) = a{e^{theta b}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaamyzamaa
% CaaaleqabaGaeqiUdeNaamOyaaaaaaa!3FBD!
$



would become



$r(theta ){rm{[final capital]}} = a[{rm{initial capital]}}{e^{b[{rm{yearly interest rate]}}frac{theta }{{2pi }}[{rm{fraction or multiple of year elapsed]}}}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaqGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaab2facqGH9aqpcaWGHbGaai4waiaabMgacaqG
% UbGaaeyAaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaae4yaiaabg
% gacaqGWbGaaeyAaiaabshacaqGHbGaaeiBaiaab2facaWGLbWaaWba
% aSqabeaacaWGIbGaai4waiaabMhacaqGLbGaaeyyaiaabkhacaqGSb
% GaaeyEaiaabccacaqGPbGaaeOBaiaabshacaqGLbGaaeOCaiaabwga
% caqGZbGaaeiDaiaabccacaqGYbGaaeyyaiaabshacaqGLbGaaeyxam
% aalaaabaGaeqiUdehabaGaaGOmaiabec8aWbaacaGGBbGaaeOzaiaa
% bkhacaqGHbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae
% 4BaiaabkhacaqGGaGaaeyBaiaabwhacaqGSbGaaeiDaiaabMgacaqG
% WbGaaeiBaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabw
% gacaqGHbGaaeOCaiaabccacaqGLbGaaeiBaiaabggacaqGWbGaae4C
% aiaabwgacaqGKbGaaeyxaaaaaaa!94C4!
$



Would this adaptation work, is this the right way to do it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You can represent pretty much anything with anything. Whether it will do any good is another question.
    $endgroup$
    – Ivan Neretin
    Dec 26 '18 at 12:07










  • $begingroup$
    No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
    $endgroup$
    – Sierra
    Dec 26 '18 at 12:14
















0












$begingroup$


I am trying to represent with spirals the growth of a capital as the Bank pays interest.



The analogy would be that the capital is represented by the radius and the passage of time by the motion of the circle with constant angular speed.



The Archimedes spiral (where radius is growing in arithmetic progression) would be the equivalent of simple interest and the logarithmic spiral would represent compound interest.



Going quantitative, I have doubts. I have tried to adapt the formulas as follows (I am stipulating that one turn is 1 year):



SIMPLE INTEREST (Archimides spiral):



$r(theta ) = atheta
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaeqiUdeha
% aa!3DBF!
$



would become



$r(theta )[{rm{final capital}}] = {rm{initial capital + a[yearly interest]}}frac{theta }{{2pi }}{rm{[fraction or multiple of year elapsed]}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaGGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaac2facqGH9aqpcaqGPbGaaeOBaiaabMgacaqG
% 0bGaaeyAaiaabggacaqGSbGaaeiiaiaabogacaqGHbGaaeiCaiaabM
% gacaqG0bGaaeyyaiaabYgacaqGRaGaaeyyaiaabUfacaqG5bGaaeyz
% aiaabggacaqGYbGaaeiBaiaabMhacaqGGaGaaeyAaiaab6gacaqG0b
% GaaeyzaiaabkhacaqGLbGaae4CaiaabshacaqGDbWaaSaaaeaacqaH
% 4oqCaeaacaaIYaGaeqiWdahaaiaabUfacaqGMbGaaeOCaiaabggaca
% qGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOCaiaa
% bccacaqGTbGaaeyDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaae
% yzaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaaeyzaiaabggacaqG
% YbGaaeiiaiaabwgacaqGSbGaaeyyaiaabchacaqGZbGaaeyzaiaabs
% gacaqGDbaaaa!8D58!
$



COMPOUND INTEREST (Logarithmic spiral):



$r(theta ) = a{e^{theta b}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaamyzamaa
% CaaaleqabaGaeqiUdeNaamOyaaaaaaa!3FBD!
$



would become



$r(theta ){rm{[final capital]}} = a[{rm{initial capital]}}{e^{b[{rm{yearly interest rate]}}frac{theta }{{2pi }}[{rm{fraction or multiple of year elapsed]}}}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaqGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaab2facqGH9aqpcaWGHbGaai4waiaabMgacaqG
% UbGaaeyAaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaae4yaiaabg
% gacaqGWbGaaeyAaiaabshacaqGHbGaaeiBaiaab2facaWGLbWaaWba
% aSqabeaacaWGIbGaai4waiaabMhacaqGLbGaaeyyaiaabkhacaqGSb
% GaaeyEaiaabccacaqGPbGaaeOBaiaabshacaqGLbGaaeOCaiaabwga
% caqGZbGaaeiDaiaabccacaqGYbGaaeyyaiaabshacaqGLbGaaeyxam
% aalaaabaGaeqiUdehabaGaaGOmaiabec8aWbaacaGGBbGaaeOzaiaa
% bkhacaqGHbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae
% 4BaiaabkhacaqGGaGaaeyBaiaabwhacaqGSbGaaeiDaiaabMgacaqG
% WbGaaeiBaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabw
% gacaqGHbGaaeOCaiaabccacaqGLbGaaeiBaiaabggacaqGWbGaae4C
% aiaabwgacaqGKbGaaeyxaaaaaaa!94C4!
$



Would this adaptation work, is this the right way to do it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You can represent pretty much anything with anything. Whether it will do any good is another question.
    $endgroup$
    – Ivan Neretin
    Dec 26 '18 at 12:07










  • $begingroup$
    No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
    $endgroup$
    – Sierra
    Dec 26 '18 at 12:14














0












0








0





$begingroup$


I am trying to represent with spirals the growth of a capital as the Bank pays interest.



The analogy would be that the capital is represented by the radius and the passage of time by the motion of the circle with constant angular speed.



The Archimedes spiral (where radius is growing in arithmetic progression) would be the equivalent of simple interest and the logarithmic spiral would represent compound interest.



Going quantitative, I have doubts. I have tried to adapt the formulas as follows (I am stipulating that one turn is 1 year):



SIMPLE INTEREST (Archimides spiral):



$r(theta ) = atheta
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaeqiUdeha
% aa!3DBF!
$



would become



$r(theta )[{rm{final capital}}] = {rm{initial capital + a[yearly interest]}}frac{theta }{{2pi }}{rm{[fraction or multiple of year elapsed]}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaGGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaac2facqGH9aqpcaqGPbGaaeOBaiaabMgacaqG
% 0bGaaeyAaiaabggacaqGSbGaaeiiaiaabogacaqGHbGaaeiCaiaabM
% gacaqG0bGaaeyyaiaabYgacaqGRaGaaeyyaiaabUfacaqG5bGaaeyz
% aiaabggacaqGYbGaaeiBaiaabMhacaqGGaGaaeyAaiaab6gacaqG0b
% GaaeyzaiaabkhacaqGLbGaae4CaiaabshacaqGDbWaaSaaaeaacqaH
% 4oqCaeaacaaIYaGaeqiWdahaaiaabUfacaqGMbGaaeOCaiaabggaca
% qGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOCaiaa
% bccacaqGTbGaaeyDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaae
% yzaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaaeyzaiaabggacaqG
% YbGaaeiiaiaabwgacaqGSbGaaeyyaiaabchacaqGZbGaaeyzaiaabs
% gacaqGDbaaaa!8D58!
$



COMPOUND INTEREST (Logarithmic spiral):



$r(theta ) = a{e^{theta b}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaamyzamaa
% CaaaleqabaGaeqiUdeNaamOyaaaaaaa!3FBD!
$



would become



$r(theta ){rm{[final capital]}} = a[{rm{initial capital]}}{e^{b[{rm{yearly interest rate]}}frac{theta }{{2pi }}[{rm{fraction or multiple of year elapsed]}}}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaqGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaab2facqGH9aqpcaWGHbGaai4waiaabMgacaqG
% UbGaaeyAaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaae4yaiaabg
% gacaqGWbGaaeyAaiaabshacaqGHbGaaeiBaiaab2facaWGLbWaaWba
% aSqabeaacaWGIbGaai4waiaabMhacaqGLbGaaeyyaiaabkhacaqGSb
% GaaeyEaiaabccacaqGPbGaaeOBaiaabshacaqGLbGaaeOCaiaabwga
% caqGZbGaaeiDaiaabccacaqGYbGaaeyyaiaabshacaqGLbGaaeyxam
% aalaaabaGaeqiUdehabaGaaGOmaiabec8aWbaacaGGBbGaaeOzaiaa
% bkhacaqGHbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae
% 4BaiaabkhacaqGGaGaaeyBaiaabwhacaqGSbGaaeiDaiaabMgacaqG
% WbGaaeiBaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabw
% gacaqGHbGaaeOCaiaabccacaqGLbGaaeiBaiaabggacaqGWbGaae4C
% aiaabwgacaqGKbGaaeyxaaaaaaa!94C4!
$



Would this adaptation work, is this the right way to do it?










share|cite|improve this question











$endgroup$




I am trying to represent with spirals the growth of a capital as the Bank pays interest.



The analogy would be that the capital is represented by the radius and the passage of time by the motion of the circle with constant angular speed.



The Archimedes spiral (where radius is growing in arithmetic progression) would be the equivalent of simple interest and the logarithmic spiral would represent compound interest.



Going quantitative, I have doubts. I have tried to adapt the formulas as follows (I am stipulating that one turn is 1 year):



SIMPLE INTEREST (Archimides spiral):



$r(theta ) = atheta
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaeqiUdeha
% aa!3DBF!
$



would become



$r(theta )[{rm{final capital}}] = {rm{initial capital + a[yearly interest]}}frac{theta }{{2pi }}{rm{[fraction or multiple of year elapsed]}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaGGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaac2facqGH9aqpcaqGPbGaaeOBaiaabMgacaqG
% 0bGaaeyAaiaabggacaqGSbGaaeiiaiaabogacaqGHbGaaeiCaiaabM
% gacaqG0bGaaeyyaiaabYgacaqGRaGaaeyyaiaabUfacaqG5bGaaeyz
% aiaabggacaqGYbGaaeiBaiaabMhacaqGGaGaaeyAaiaab6gacaqG0b
% GaaeyzaiaabkhacaqGLbGaae4CaiaabshacaqGDbWaaSaaaeaacqaH
% 4oqCaeaacaaIYaGaeqiWdahaaiaabUfacaqGMbGaaeOCaiaabggaca
% qGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOCaiaa
% bccacaqGTbGaaeyDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaae
% yzaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaaeyzaiaabggacaqG
% YbGaaeiiaiaabwgacaqGSbGaaeyyaiaabchacaqGZbGaaeyzaiaabs
% gacaqGDbaaaa!8D58!
$



COMPOUND INTEREST (Logarithmic spiral):



$r(theta ) = a{e^{theta b}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGHbGaamyzamaa
% CaaaleqabaGaeqiUdeNaamOyaaaaaaa!3FBD!
$



would become



$r(theta ){rm{[final capital]}} = a[{rm{initial capital]}}{e^{b[{rm{yearly interest rate]}}frac{theta }{{2pi }}[{rm{fraction or multiple of year elapsed]}}}}
% MathType!MTEF!2!1!+-
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qacaWGYbGaaiikaiabeI7aXjaacMcacaqGBbGaaeOzaiaabMgacaqG
% UbGaaeyyaiaabYgacaqGGaGaae4yaiaabggacaqGWbGaaeyAaiaabs
% hacaqGHbGaaeiBaiaab2facqGH9aqpcaWGHbGaai4waiaabMgacaqG
% UbGaaeyAaiaabshacaqGPbGaaeyyaiaabYgacaqGGaGaae4yaiaabg
% gacaqGWbGaaeyAaiaabshacaqGHbGaaeiBaiaab2facaWGLbWaaWba
% aSqabeaacaWGIbGaai4waiaabMhacaqGLbGaaeyyaiaabkhacaqGSb
% GaaeyEaiaabccacaqGPbGaaeOBaiaabshacaqGLbGaaeOCaiaabwga
% caqGZbGaaeiDaiaabccacaqGYbGaaeyyaiaabshacaqGLbGaaeyxam
% aalaaabaGaeqiUdehabaGaaGOmaiabec8aWbaacaGGBbGaaeOzaiaa
% bkhacaqGHbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae
% 4BaiaabkhacaqGGaGaaeyBaiaabwhacaqGSbGaaeiDaiaabMgacaqG
% WbGaaeiBaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabw
% gacaqGHbGaaeOCaiaabccacaqGLbGaaeiBaiaabggacaqGWbGaae4C
% aiaabwgacaqGKbGaaeyxaaaaaaa!94C4!
$



Would this adaptation work, is this the right way to do it?







trigonometry exponential-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 26 '18 at 17:05







Sierra

















asked Dec 26 '18 at 8:46









SierraSierra

315




315












  • $begingroup$
    You can represent pretty much anything with anything. Whether it will do any good is another question.
    $endgroup$
    – Ivan Neretin
    Dec 26 '18 at 12:07










  • $begingroup$
    No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
    $endgroup$
    – Sierra
    Dec 26 '18 at 12:14


















  • $begingroup$
    You can represent pretty much anything with anything. Whether it will do any good is another question.
    $endgroup$
    – Ivan Neretin
    Dec 26 '18 at 12:07










  • $begingroup$
    No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
    $endgroup$
    – Sierra
    Dec 26 '18 at 12:14
















$begingroup$
You can represent pretty much anything with anything. Whether it will do any good is another question.
$endgroup$
– Ivan Neretin
Dec 26 '18 at 12:07




$begingroup$
You can represent pretty much anything with anything. Whether it will do any good is another question.
$endgroup$
– Ivan Neretin
Dec 26 '18 at 12:07












$begingroup$
No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
$endgroup$
– Sierra
Dec 26 '18 at 12:14




$begingroup$
No doubt! I agree with both things!The fact is that it looked to me didactic, at least it guides me into the intricacies of spirals through a familiar route. But the question is whether the adaptation that I did is correct. BTW that is also a good mental exercise, but sincerely I don’t if I did it well.
$endgroup$
– Sierra
Dec 26 '18 at 12:14










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052758%2fproblem-trying-to-represent-growth-of-a-capital-with-spirals%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052758%2fproblem-trying-to-represent-growth-of-a-capital-with-spirals%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten