Find $lim_{nto infty}sum_{k=1}^{n}(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)})$
$begingroup$
Find $lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$
$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-sinfrac{pi}{2(k+2)}-cosfrac{pi}{2k}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(2cosfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}+2sinfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}right)$$
I am stuck here.
limits trigonometry definite-integrals
$endgroup$
add a comment |
$begingroup$
Find $lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$
$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-sinfrac{pi}{2(k+2)}-cosfrac{pi}{2k}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(2cosfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}+2sinfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}right)$$
I am stuck here.
limits trigonometry definite-integrals
$endgroup$
add a comment |
$begingroup$
Find $lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$
$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-sinfrac{pi}{2(k+2)}-cosfrac{pi}{2k}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(2cosfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}+2sinfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}right)$$
I am stuck here.
limits trigonometry definite-integrals
$endgroup$
Find $lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$
$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-sinfrac{pi}{2(k+2)}-cosfrac{pi}{2k}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(2cosfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}+2sinfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}right)$$
I am stuck here.
limits trigonometry definite-integrals
limits trigonometry definite-integrals
edited Dec 27 '18 at 16:19
Namaste
1
1
asked Dec 27 '18 at 15:34
user984325user984325
246112
246112
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint. One may recall teslescoping sums, by writing
$$
u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
$$
giving
$$
sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054059%2ffind-lim-n-to-infty-sum-k-1n-sin-frac-pi2k-cos-frac-pi2k-si%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint. One may recall teslescoping sums, by writing
$$
u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
$$
giving
$$
sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
$$
$endgroup$
add a comment |
$begingroup$
Hint. One may recall teslescoping sums, by writing
$$
u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
$$
giving
$$
sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
$$
$endgroup$
add a comment |
$begingroup$
Hint. One may recall teslescoping sums, by writing
$$
u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
$$
giving
$$
sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
$$
$endgroup$
Hint. One may recall teslescoping sums, by writing
$$
u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
$$
giving
$$
sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
$$
edited Dec 31 '18 at 7:52
answered Dec 27 '18 at 15:43
Olivier OloaOlivier Oloa
109k17178294
109k17178294
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054059%2ffind-lim-n-to-infty-sum-k-1n-sin-frac-pi2k-cos-frac-pi2k-si%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown