Find $lim_{nto infty}sum_{k=1}^{n}(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)})$












3












$begingroup$


Find $lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$





$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-sinfrac{pi}{2(k+2)}-cosfrac{pi}{2k}+cosfrac{pi}{2(k+2)}right)$$
$$lim_{nto infty}sum_{k=1}^{n}left(2cosfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}+2sinfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}right)$$
I am stuck here.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Find $lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$





    $$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$$
    $$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-sinfrac{pi}{2(k+2)}-cosfrac{pi}{2k}+cosfrac{pi}{2(k+2)}right)$$
    $$lim_{nto infty}sum_{k=1}^{n}left(2cosfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}+2sinfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}right)$$
    I am stuck here.










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$


      Find $lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$





      $$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$$
      $$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-sinfrac{pi}{2(k+2)}-cosfrac{pi}{2k}+cosfrac{pi}{2(k+2)}right)$$
      $$lim_{nto infty}sum_{k=1}^{n}left(2cosfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}+2sinfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}right)$$
      I am stuck here.










      share|cite|improve this question











      $endgroup$




      Find $lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$





      $$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-cosfrac{pi}{2k}-sinfrac{pi}{2(k+2)}+cosfrac{pi}{2(k+2)}right)$$
      $$lim_{nto infty}sum_{k=1}^{n}left(sinfrac{pi}{2k}-sinfrac{pi}{2(k+2)}-cosfrac{pi}{2k}+cosfrac{pi}{2(k+2)}right)$$
      $$lim_{nto infty}sum_{k=1}^{n}left(2cosfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}+2sinfrac{(frac{pi}{2k}+frac{pi}{2(k+2)})}{2}sinfrac{(frac{pi}{2k}-frac{pi}{2(k+2)})}{2}right)$$
      I am stuck here.







      limits trigonometry definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 27 '18 at 16:19









      Namaste

      1




      1










      asked Dec 27 '18 at 15:34









      user984325user984325

      246112




      246112






















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          Hint. One may recall teslescoping sums, by writing
          $$
          u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
          $$

          giving
          $$
          sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
          $$






          share|cite|improve this answer











          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054059%2ffind-lim-n-to-infty-sum-k-1n-sin-frac-pi2k-cos-frac-pi2k-si%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            7












            $begingroup$

            Hint. One may recall teslescoping sums, by writing
            $$
            u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
            $$

            giving
            $$
            sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
            $$






            share|cite|improve this answer











            $endgroup$


















              7












              $begingroup$

              Hint. One may recall teslescoping sums, by writing
              $$
              u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
              $$

              giving
              $$
              sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
              $$






              share|cite|improve this answer











              $endgroup$
















                7












                7








                7





                $begingroup$

                Hint. One may recall teslescoping sums, by writing
                $$
                u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
                $$

                giving
                $$
                sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
                $$






                share|cite|improve this answer











                $endgroup$



                Hint. One may recall teslescoping sums, by writing
                $$
                u_{k+2}-u_k=left(u_{k+2}-u_{k+1} right)+left(u_{k+1}-u_{k} right)
                $$

                giving
                $$
                sum_{k=1}^nleft(u_{k+2}-u_{k} right)=left(u_{n+2}-u_2right)+left(u_{n+1}-u_1right).
                $$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 31 '18 at 7:52

























                answered Dec 27 '18 at 15:43









                Olivier OloaOlivier Oloa

                109k17178294




                109k17178294






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054059%2ffind-lim-n-to-infty-sum-k-1n-sin-frac-pi2k-cos-frac-pi2k-si%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten