How to transform an expression into a form involving the trace of a product of two matrices
$begingroup$
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
$endgroup$
add a comment |
$begingroup$
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
$endgroup$
$begingroup$
I have taken the liberty to modify your title which was "uninformative".
$endgroup$
– Jean Marie
Dec 31 '18 at 19:48
add a comment |
$begingroup$
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
$endgroup$
In page 594 of Bishop's PRML, the following equation is implied:
$$
-frac{1}{2}sum(mathbf{x}_n-mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n-mathbf{bar{x}}) = -frac{N}{2}mathrm{Tr}(mathbf{C}^{-1}mathbf{S})
$$
where
$$
mathbf{S} = frac{1}{N}sum(mathbf{x}_n-mathbf{bar{x}})(mathbf{x}_n-mathbf{bar{x}})^T
$$
,$mathbf{C}$ is a symmetric matrix and $mathbf{bar{x}} = frac{sum_{n=1}^Nmathbf{x}_n}{N}$.
I want to derive this equation myself. But I'm not sure how to do it. Could someone show why the equation holds?
linear-algebra
linear-algebra
edited Dec 31 '18 at 19:46
Jean Marie
31.6k42355
31.6k42355
asked Dec 31 '18 at 12:16
SandiSandi
262112
262112
$begingroup$
I have taken the liberty to modify your title which was "uninformative".
$endgroup$
– Jean Marie
Dec 31 '18 at 19:48
add a comment |
$begingroup$
I have taken the liberty to modify your title which was "uninformative".
$endgroup$
– Jean Marie
Dec 31 '18 at 19:48
$begingroup$
I have taken the liberty to modify your title which was "uninformative".
$endgroup$
– Jean Marie
Dec 31 '18 at 19:48
$begingroup$
I have taken the liberty to modify your title which was "uninformative".
$endgroup$
– Jean Marie
Dec 31 '18 at 19:48
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
$endgroup$
add a comment |
$begingroup$
With the help of Siong Thye Goh, I did the following:
begin{align}
-frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
$endgroup$
$begingroup$
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 13:00
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057651%2fhow-to-transform-an-expression-into-a-form-involving-the-trace-of-a-product-of-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
$endgroup$
add a comment |
$begingroup$
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
$endgroup$
add a comment |
$begingroup$
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
$endgroup$
Guide:
Notice that $(x_n - bar{x})^TC^{-1}(x_n - bar{x})$ is a scalar,
hence $$(x_n - bar{x})^TC^{-1}(x_n - bar{x})= operatorname{Tr}left[(x_n - bar{x})^TC^{-1}(x_n - bar{x})right]=operatorname{Tr}left[C^{-1}(x_n - bar{x})(x_n - bar{x})^Tright]$$
since $operatorname{Tr}(AB)=operatorname{Tr}(BA)$.
Hopefully you can take it from here.
edited Dec 31 '18 at 12:28
Bernard
125k743119
125k743119
answered Dec 31 '18 at 12:19
Siong Thye GohSiong Thye Goh
105k1469121
105k1469121
add a comment |
add a comment |
$begingroup$
With the help of Siong Thye Goh, I did the following:
begin{align}
-frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
$endgroup$
$begingroup$
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 13:00
add a comment |
$begingroup$
With the help of Siong Thye Goh, I did the following:
begin{align}
-frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
$endgroup$
$begingroup$
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 13:00
add a comment |
$begingroup$
With the help of Siong Thye Goh, I did the following:
begin{align}
-frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
$endgroup$
With the help of Siong Thye Goh, I did the following:
begin{align}
-frac{1}{2}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}}) &= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[(mathbf{x}_n - mathbf{bar{x}})^Tmathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})]\
&= -frac{1}{2}sum_{n=1}^Nmathrm{Tr}[mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[sum^N_{n=1}mathbf{C}^{-1}(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}sum_{n=1}^N(mathbf{x}_n - mathbf{bar{x}})(mathbf{x}_n - mathbf{bar{x}})^T]\
&= -frac{1}{2}mathrm{Tr}[mathbf{C}^{-1}Nmathbf{S}] = -frac{N}{2}mathrm{Tr}[mathbf{C}^{-1}mathbf{S}]
end{align}
edited Jan 1 at 14:34
answered Dec 31 '18 at 12:43
SandiSandi
262112
262112
$begingroup$
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 13:00
add a comment |
$begingroup$
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 13:00
$begingroup$
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 13:00
$begingroup$
+1 great job! just a minor careless step at the very beginning, there's a negative there. ;)
$endgroup$
– Siong Thye Goh
Dec 31 '18 at 13:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057651%2fhow-to-transform-an-expression-into-a-form-involving-the-trace-of-a-product-of-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I have taken the liberty to modify your title which was "uninformative".
$endgroup$
– Jean Marie
Dec 31 '18 at 19:48