power logsine integral $int_0^frac{pi}{2}ln^n{(sin{x})}dx$











up vote
3
down vote

favorite
3












It is not hard to find that $int_0^frac{pi}{2}ln{(sin{x})}dx=-frac{pi}{2}ln2$.



https://socratic.org/questions/how-do-you-prove-that-the-integral-of-ln-sin-x-on-the-interval-0-pi-2-is-converg



Moreover wolfram can compute that
$$int_0^frac{pi}{2}ln^2{(sin{x})}dx=frac{pi^3+3piln^24}{24}$$
$$int_0^frac{pi}{2}ln^3{(sin{x})}dx=-frac{pi}{16}(12zeta(3)+ln^34+pi^2ln4)$$
and $$int_0^frac{pi}{2}ln^4{(sin{x})}dx=pizeta(3)ln{8}+frac{19pi^5}{480}+frac{pi}{2}ln^42+frac{pi^3}{4}ln^22$$



How to prove these formulas?
In general, How to evaluate the integral $displaystyleint_0^frac{pi}{2}ln^n{(sin{x})}dx$ ?



Thanks in advance.










share|cite|improve this question


























    up vote
    3
    down vote

    favorite
    3












    It is not hard to find that $int_0^frac{pi}{2}ln{(sin{x})}dx=-frac{pi}{2}ln2$.



    https://socratic.org/questions/how-do-you-prove-that-the-integral-of-ln-sin-x-on-the-interval-0-pi-2-is-converg



    Moreover wolfram can compute that
    $$int_0^frac{pi}{2}ln^2{(sin{x})}dx=frac{pi^3+3piln^24}{24}$$
    $$int_0^frac{pi}{2}ln^3{(sin{x})}dx=-frac{pi}{16}(12zeta(3)+ln^34+pi^2ln4)$$
    and $$int_0^frac{pi}{2}ln^4{(sin{x})}dx=pizeta(3)ln{8}+frac{19pi^5}{480}+frac{pi}{2}ln^42+frac{pi^3}{4}ln^22$$



    How to prove these formulas?
    In general, How to evaluate the integral $displaystyleint_0^frac{pi}{2}ln^n{(sin{x})}dx$ ?



    Thanks in advance.










    share|cite|improve this question
























      up vote
      3
      down vote

      favorite
      3









      up vote
      3
      down vote

      favorite
      3






      3





      It is not hard to find that $int_0^frac{pi}{2}ln{(sin{x})}dx=-frac{pi}{2}ln2$.



      https://socratic.org/questions/how-do-you-prove-that-the-integral-of-ln-sin-x-on-the-interval-0-pi-2-is-converg



      Moreover wolfram can compute that
      $$int_0^frac{pi}{2}ln^2{(sin{x})}dx=frac{pi^3+3piln^24}{24}$$
      $$int_0^frac{pi}{2}ln^3{(sin{x})}dx=-frac{pi}{16}(12zeta(3)+ln^34+pi^2ln4)$$
      and $$int_0^frac{pi}{2}ln^4{(sin{x})}dx=pizeta(3)ln{8}+frac{19pi^5}{480}+frac{pi}{2}ln^42+frac{pi^3}{4}ln^22$$



      How to prove these formulas?
      In general, How to evaluate the integral $displaystyleint_0^frac{pi}{2}ln^n{(sin{x})}dx$ ?



      Thanks in advance.










      share|cite|improve this question













      It is not hard to find that $int_0^frac{pi}{2}ln{(sin{x})}dx=-frac{pi}{2}ln2$.



      https://socratic.org/questions/how-do-you-prove-that-the-integral-of-ln-sin-x-on-the-interval-0-pi-2-is-converg



      Moreover wolfram can compute that
      $$int_0^frac{pi}{2}ln^2{(sin{x})}dx=frac{pi^3+3piln^24}{24}$$
      $$int_0^frac{pi}{2}ln^3{(sin{x})}dx=-frac{pi}{16}(12zeta(3)+ln^34+pi^2ln4)$$
      and $$int_0^frac{pi}{2}ln^4{(sin{x})}dx=pizeta(3)ln{8}+frac{19pi^5}{480}+frac{pi}{2}ln^42+frac{pi^3}{4}ln^22$$



      How to prove these formulas?
      In general, How to evaluate the integral $displaystyleint_0^frac{pi}{2}ln^n{(sin{x})}dx$ ?



      Thanks in advance.







      integration definite-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 6 at 8:47









      Bless

      1,335414




      1,335414






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          5
          down vote













          $begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$



          Perform the change of variable $y=sin x$,



          $begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$



          Perform the change of variable $y=x^2$,



          $begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$



          Consider,



          $begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
          &=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
          &=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
          &=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
          end{align}$



          $begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$



          NB:
          $text{B}(,)$ denotes the Beta Euler function.



          Example:



          Let $n=1$.



          $begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$



          But,



          $begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$



          $begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$



          $begin{align}Gammaleft(1right)=1end{align}$



          $begin{align}Gamma^primeleft(1right)=-gammaend{align}$



          Therefore,



          $begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
          &=boxed{-frac{1}{2}piln 2}
          end{align}$



          Addendum:



          To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.



          Fact 1):



          $begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$



          (following from the definition of Digamma function and the use of Leibniz-Newton formula)



          Fact 2):



          For $0<|z-1|<1$,



          $begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$



          Therefore,



          For $kgeq 1$,



          $displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$



          Fact 3):



          For $0<Re(z)<1$,



          $displaystyle psi(z)+psi(1-z)=picot(pi x)$



          (allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)






          share|cite|improve this answer






























            up vote
            1
            down vote













            It's



            $displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$



            with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,



            $displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$



            and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.



            It follows by coefficient comparison:




            $$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$






            $a_0=1$ , $,,a_1=0$



            Using the definitions



            $displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and



            $displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
            (as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)



            we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .



            Note:



            $displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$



            $displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$



            ...





            In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with



            the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and



            the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .






            share|cite|improve this answer























              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2638295%2fpower-logsine-integral-int-0-frac-pi2-lnn-sinxdx%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              5
              down vote













              $begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$



              Perform the change of variable $y=sin x$,



              $begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$



              Perform the change of variable $y=x^2$,



              $begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$



              Consider,



              $begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
              &=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
              &=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
              &=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
              end{align}$



              $begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$



              NB:
              $text{B}(,)$ denotes the Beta Euler function.



              Example:



              Let $n=1$.



              $begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$



              But,



              $begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$



              $begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$



              $begin{align}Gammaleft(1right)=1end{align}$



              $begin{align}Gamma^primeleft(1right)=-gammaend{align}$



              Therefore,



              $begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
              &=boxed{-frac{1}{2}piln 2}
              end{align}$



              Addendum:



              To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.



              Fact 1):



              $begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$



              (following from the definition of Digamma function and the use of Leibniz-Newton formula)



              Fact 2):



              For $0<|z-1|<1$,



              $begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$



              Therefore,



              For $kgeq 1$,



              $displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$



              Fact 3):



              For $0<Re(z)<1$,



              $displaystyle psi(z)+psi(1-z)=picot(pi x)$



              (allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)






              share|cite|improve this answer



























                up vote
                5
                down vote













                $begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$



                Perform the change of variable $y=sin x$,



                $begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$



                Perform the change of variable $y=x^2$,



                $begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$



                Consider,



                $begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
                &=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
                &=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
                &=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
                end{align}$



                $begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$



                NB:
                $text{B}(,)$ denotes the Beta Euler function.



                Example:



                Let $n=1$.



                $begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$



                But,



                $begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$



                $begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$



                $begin{align}Gammaleft(1right)=1end{align}$



                $begin{align}Gamma^primeleft(1right)=-gammaend{align}$



                Therefore,



                $begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
                &=boxed{-frac{1}{2}piln 2}
                end{align}$



                Addendum:



                To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.



                Fact 1):



                $begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$



                (following from the definition of Digamma function and the use of Leibniz-Newton formula)



                Fact 2):



                For $0<|z-1|<1$,



                $begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$



                Therefore,



                For $kgeq 1$,



                $displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$



                Fact 3):



                For $0<Re(z)<1$,



                $displaystyle psi(z)+psi(1-z)=picot(pi x)$



                (allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)






                share|cite|improve this answer

























                  up vote
                  5
                  down vote










                  up vote
                  5
                  down vote









                  $begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$



                  Perform the change of variable $y=sin x$,



                  $begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$



                  Perform the change of variable $y=x^2$,



                  $begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$



                  Consider,



                  $begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
                  &=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
                  &=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
                  &=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
                  end{align}$



                  $begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$



                  NB:
                  $text{B}(,)$ denotes the Beta Euler function.



                  Example:



                  Let $n=1$.



                  $begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$



                  But,



                  $begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$



                  $begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$



                  $begin{align}Gammaleft(1right)=1end{align}$



                  $begin{align}Gamma^primeleft(1right)=-gammaend{align}$



                  Therefore,



                  $begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
                  &=boxed{-frac{1}{2}piln 2}
                  end{align}$



                  Addendum:



                  To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.



                  Fact 1):



                  $begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$



                  (following from the definition of Digamma function and the use of Leibniz-Newton formula)



                  Fact 2):



                  For $0<|z-1|<1$,



                  $begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$



                  Therefore,



                  For $kgeq 1$,



                  $displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$



                  Fact 3):



                  For $0<Re(z)<1$,



                  $displaystyle psi(z)+psi(1-z)=picot(pi x)$



                  (allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)






                  share|cite|improve this answer














                  $begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$



                  Perform the change of variable $y=sin x$,



                  $begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$



                  Perform the change of variable $y=x^2$,



                  $begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$



                  Consider,



                  $begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
                  &=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
                  &=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
                  &=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
                  end{align}$



                  $begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$



                  NB:
                  $text{B}(,)$ denotes the Beta Euler function.



                  Example:



                  Let $n=1$.



                  $begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$



                  But,



                  $begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$



                  $begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$



                  $begin{align}Gammaleft(1right)=1end{align}$



                  $begin{align}Gamma^primeleft(1right)=-gammaend{align}$



                  Therefore,



                  $begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
                  &=boxed{-frac{1}{2}piln 2}
                  end{align}$



                  Addendum:



                  To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.



                  Fact 1):



                  $begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$



                  (following from the definition of Digamma function and the use of Leibniz-Newton formula)



                  Fact 2):



                  For $0<|z-1|<1$,



                  $begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$



                  Therefore,



                  For $kgeq 1$,



                  $displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$



                  Fact 3):



                  For $0<Re(z)<1$,



                  $displaystyle psi(z)+psi(1-z)=picot(pi x)$



                  (allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Feb 6 at 12:04

























                  answered Feb 6 at 9:29









                  FDP

                  4,47411221




                  4,47411221






















                      up vote
                      1
                      down vote













                      It's



                      $displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$



                      with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,



                      $displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$



                      and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.



                      It follows by coefficient comparison:




                      $$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$






                      $a_0=1$ , $,,a_1=0$



                      Using the definitions



                      $displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and



                      $displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
                      (as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)



                      we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .



                      Note:



                      $displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$



                      $displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$



                      ...





                      In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with



                      the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and



                      the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .






                      share|cite|improve this answer



























                        up vote
                        1
                        down vote













                        It's



                        $displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$



                        with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,



                        $displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$



                        and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.



                        It follows by coefficient comparison:




                        $$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$






                        $a_0=1$ , $,,a_1=0$



                        Using the definitions



                        $displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and



                        $displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
                        (as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)



                        we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .



                        Note:



                        $displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$



                        $displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$



                        ...





                        In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with



                        the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and



                        the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .






                        share|cite|improve this answer

























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          It's



                          $displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$



                          with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,



                          $displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$



                          and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.



                          It follows by coefficient comparison:




                          $$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$






                          $a_0=1$ , $,,a_1=0$



                          Using the definitions



                          $displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and



                          $displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
                          (as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)



                          we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .



                          Note:



                          $displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$



                          $displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$



                          ...





                          In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with



                          the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and



                          the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .






                          share|cite|improve this answer














                          It's



                          $displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$



                          with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,



                          $displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$



                          and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.



                          It follows by coefficient comparison:




                          $$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$






                          $a_0=1$ , $,,a_1=0$



                          Using the definitions



                          $displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and



                          $displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
                          (as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)



                          we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .



                          Note:



                          $displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$



                          $displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$



                          ...





                          In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with



                          the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and



                          the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Nov 22 at 16:19

























                          answered Feb 6 at 15:21









                          user90369

                          8,173925




                          8,173925






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2638295%2fpower-logsine-integral-int-0-frac-pi2-lnn-sinxdx%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bundesstraße 106

                              Verónica Boquete

                              Ida-Boy-Ed-Garten