power logsine integral $int_0^frac{pi}{2}ln^n{(sin{x})}dx$
up vote
3
down vote
favorite
It is not hard to find that $int_0^frac{pi}{2}ln{(sin{x})}dx=-frac{pi}{2}ln2$.
https://socratic.org/questions/how-do-you-prove-that-the-integral-of-ln-sin-x-on-the-interval-0-pi-2-is-converg
Moreover wolfram can compute that
$$int_0^frac{pi}{2}ln^2{(sin{x})}dx=frac{pi^3+3piln^24}{24}$$
$$int_0^frac{pi}{2}ln^3{(sin{x})}dx=-frac{pi}{16}(12zeta(3)+ln^34+pi^2ln4)$$
and $$int_0^frac{pi}{2}ln^4{(sin{x})}dx=pizeta(3)ln{8}+frac{19pi^5}{480}+frac{pi}{2}ln^42+frac{pi^3}{4}ln^22$$
How to prove these formulas?
In general, How to evaluate the integral $displaystyleint_0^frac{pi}{2}ln^n{(sin{x})}dx$ ?
Thanks in advance.
integration definite-integrals
add a comment |
up vote
3
down vote
favorite
It is not hard to find that $int_0^frac{pi}{2}ln{(sin{x})}dx=-frac{pi}{2}ln2$.
https://socratic.org/questions/how-do-you-prove-that-the-integral-of-ln-sin-x-on-the-interval-0-pi-2-is-converg
Moreover wolfram can compute that
$$int_0^frac{pi}{2}ln^2{(sin{x})}dx=frac{pi^3+3piln^24}{24}$$
$$int_0^frac{pi}{2}ln^3{(sin{x})}dx=-frac{pi}{16}(12zeta(3)+ln^34+pi^2ln4)$$
and $$int_0^frac{pi}{2}ln^4{(sin{x})}dx=pizeta(3)ln{8}+frac{19pi^5}{480}+frac{pi}{2}ln^42+frac{pi^3}{4}ln^22$$
How to prove these formulas?
In general, How to evaluate the integral $displaystyleint_0^frac{pi}{2}ln^n{(sin{x})}dx$ ?
Thanks in advance.
integration definite-integrals
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
It is not hard to find that $int_0^frac{pi}{2}ln{(sin{x})}dx=-frac{pi}{2}ln2$.
https://socratic.org/questions/how-do-you-prove-that-the-integral-of-ln-sin-x-on-the-interval-0-pi-2-is-converg
Moreover wolfram can compute that
$$int_0^frac{pi}{2}ln^2{(sin{x})}dx=frac{pi^3+3piln^24}{24}$$
$$int_0^frac{pi}{2}ln^3{(sin{x})}dx=-frac{pi}{16}(12zeta(3)+ln^34+pi^2ln4)$$
and $$int_0^frac{pi}{2}ln^4{(sin{x})}dx=pizeta(3)ln{8}+frac{19pi^5}{480}+frac{pi}{2}ln^42+frac{pi^3}{4}ln^22$$
How to prove these formulas?
In general, How to evaluate the integral $displaystyleint_0^frac{pi}{2}ln^n{(sin{x})}dx$ ?
Thanks in advance.
integration definite-integrals
It is not hard to find that $int_0^frac{pi}{2}ln{(sin{x})}dx=-frac{pi}{2}ln2$.
https://socratic.org/questions/how-do-you-prove-that-the-integral-of-ln-sin-x-on-the-interval-0-pi-2-is-converg
Moreover wolfram can compute that
$$int_0^frac{pi}{2}ln^2{(sin{x})}dx=frac{pi^3+3piln^24}{24}$$
$$int_0^frac{pi}{2}ln^3{(sin{x})}dx=-frac{pi}{16}(12zeta(3)+ln^34+pi^2ln4)$$
and $$int_0^frac{pi}{2}ln^4{(sin{x})}dx=pizeta(3)ln{8}+frac{19pi^5}{480}+frac{pi}{2}ln^42+frac{pi^3}{4}ln^22$$
How to prove these formulas?
In general, How to evaluate the integral $displaystyleint_0^frac{pi}{2}ln^n{(sin{x})}dx$ ?
Thanks in advance.
integration definite-integrals
integration definite-integrals
asked Feb 6 at 8:47
Bless
1,335414
1,335414
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
5
down vote
$begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$
Perform the change of variable $y=sin x$,
$begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$
Perform the change of variable $y=x^2$,
$begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$
Consider,
$begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
&=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
&=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
&=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
end{align}$
$begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$
NB:
$text{B}(,)$ denotes the Beta Euler function.
Example:
Let $n=1$.
$begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$
But,
$begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$
$begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$
$begin{align}Gammaleft(1right)=1end{align}$
$begin{align}Gamma^primeleft(1right)=-gammaend{align}$
Therefore,
$begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
&=boxed{-frac{1}{2}piln 2}
end{align}$
Addendum:
To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.
Fact 1):
$begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$
(following from the definition of Digamma function and the use of Leibniz-Newton formula)
Fact 2):
For $0<|z-1|<1$,
$begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$
Therefore,
For $kgeq 1$,
$displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$
Fact 3):
For $0<Re(z)<1$,
$displaystyle psi(z)+psi(1-z)=picot(pi x)$
(allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)
add a comment |
up vote
1
down vote
It's
$displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$
with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,
$displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$
and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.
It follows by coefficient comparison:
$$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$
$a_0=1$ , $,,a_1=0$
Using the definitions
$displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and
$displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
(as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)
we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .
Note:
$displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$
$displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$
...
In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with
the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and
the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2638295%2fpower-logsine-integral-int-0-frac-pi2-lnn-sinxdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
$begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$
Perform the change of variable $y=sin x$,
$begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$
Perform the change of variable $y=x^2$,
$begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$
Consider,
$begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
&=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
&=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
&=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
end{align}$
$begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$
NB:
$text{B}(,)$ denotes the Beta Euler function.
Example:
Let $n=1$.
$begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$
But,
$begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$
$begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$
$begin{align}Gammaleft(1right)=1end{align}$
$begin{align}Gamma^primeleft(1right)=-gammaend{align}$
Therefore,
$begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
&=boxed{-frac{1}{2}piln 2}
end{align}$
Addendum:
To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.
Fact 1):
$begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$
(following from the definition of Digamma function and the use of Leibniz-Newton formula)
Fact 2):
For $0<|z-1|<1$,
$begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$
Therefore,
For $kgeq 1$,
$displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$
Fact 3):
For $0<Re(z)<1$,
$displaystyle psi(z)+psi(1-z)=picot(pi x)$
(allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)
add a comment |
up vote
5
down vote
$begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$
Perform the change of variable $y=sin x$,
$begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$
Perform the change of variable $y=x^2$,
$begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$
Consider,
$begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
&=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
&=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
&=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
end{align}$
$begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$
NB:
$text{B}(,)$ denotes the Beta Euler function.
Example:
Let $n=1$.
$begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$
But,
$begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$
$begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$
$begin{align}Gammaleft(1right)=1end{align}$
$begin{align}Gamma^primeleft(1right)=-gammaend{align}$
Therefore,
$begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
&=boxed{-frac{1}{2}piln 2}
end{align}$
Addendum:
To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.
Fact 1):
$begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$
(following from the definition of Digamma function and the use of Leibniz-Newton formula)
Fact 2):
For $0<|z-1|<1$,
$begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$
Therefore,
For $kgeq 1$,
$displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$
Fact 3):
For $0<Re(z)<1$,
$displaystyle psi(z)+psi(1-z)=picot(pi x)$
(allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)
add a comment |
up vote
5
down vote
up vote
5
down vote
$begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$
Perform the change of variable $y=sin x$,
$begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$
Perform the change of variable $y=x^2$,
$begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$
Consider,
$begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
&=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
&=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
&=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
end{align}$
$begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$
NB:
$text{B}(,)$ denotes the Beta Euler function.
Example:
Let $n=1$.
$begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$
But,
$begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$
$begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$
$begin{align}Gammaleft(1right)=1end{align}$
$begin{align}Gamma^primeleft(1right)=-gammaend{align}$
Therefore,
$begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
&=boxed{-frac{1}{2}piln 2}
end{align}$
Addendum:
To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.
Fact 1):
$begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$
(following from the definition of Digamma function and the use of Leibniz-Newton formula)
Fact 2):
For $0<|z-1|<1$,
$begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$
Therefore,
For $kgeq 1$,
$displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$
Fact 3):
For $0<Re(z)<1$,
$displaystyle psi(z)+psi(1-z)=picot(pi x)$
(allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)
$begin{align}J_n=int_0^{frac{pi}{2}}ln^n(sin x),dxend{align}$
Perform the change of variable $y=sin x$,
$begin{align}J_n=int_0^1 frac{ln^n(x)}{sqrt{1-x^2}},dxend{align}$
Perform the change of variable $y=x^2$,
$begin{align}J_n=frac{1}{2^{n+1}}int_0^1 frac{x^{-frac{1}{2}}ln^n(x)}{sqrt{1-x}},dxend{align}$
Consider,
$begin{align}B_n(s)&=frac{1}{2^{n+1}}int_0^1 x^{-frac{1}{2}+s}(1-x)^{-frac{1}{2}},dx\
&=frac{1}{2^{n+1}}text{B}left(frac{1}{2}+s,frac{1}{2}right)\
&=frac{1}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)Gammaleft(frac{1}{2}right)}{Gamma(1+s)}\
&=frac{sqrt{pi}}{2^{n+1}}frac{Gammaleft(frac{1}{2}+sright)}{Gamma(1+s)}
end{align}$
$begin{align}boxed{J_n=frac{partial^n B_n(s)}{partial s^n}big|_{s=0}}end{align}$
NB:
$text{B}(,)$ denotes the Beta Euler function.
Example:
Let $n=1$.
$begin{align}J_1=frac{sqrt{pi}}{4}frac{Gamma^primeleft(frac{1}{2}right)Gamma(1)-Gammaleft(frac{1}{2}right)Gamma^prime(1)}{Gamma^2(1)}end{align}$
But,
$begin{align}Gamma^primeleft(frac{1}{2}right)=-(gamma+2ln 2)sqrt{pi}end{align}$
$begin{align}Gammaleft(frac{1}{2}right)=sqrt{pi}end{align}$
$begin{align}Gammaleft(1right)=1end{align}$
$begin{align}Gamma^primeleft(1right)=-gammaend{align}$
Therefore,
$begin{align}J_1&=frac{sqrt{pi}}{4}times frac{-(gamma+2ln 2)sqrt{pi}+gammasqrt{pi}}{1}\
&=boxed{-frac{1}{2}piln 2}
end{align}$
Addendum:
To compute $J_n$ one needs to be able to evaluate $Gamma^{(k)}(1),Gamma^{(k)}left(frac{1}{2}right)$ for $0leq kleq n$.
Fact 1):
$begin{align} Gamma^{(m+1)}(z)=sum_{k=0}^{m} binom{m}{k}Gamma^{(k)}(z)psi^{(m-k)}(z)end{align}$
(following from the definition of Digamma function and the use of Leibniz-Newton formula)
Fact 2):
For $0<|z-1|<1$,
$begin{align}psi(z)=-gamma+sum_{k=1}^{infty}(-1)^{k+1}zeta(k+1)(z-1)^kend{align}$
Therefore,
For $kgeq 1$,
$displaystyle psi^{(k)}(1)=(-1)^{k+1}k!zeta(k+1)$
Fact 3):
For $0<Re(z)<1$,
$displaystyle psi(z)+psi(1-z)=picot(pi x)$
(allowing to compute $displaystyle psi^{(k)}left(frac{1}{2}right)$)
edited Feb 6 at 12:04
answered Feb 6 at 9:29
FDP
4,47411221
4,47411221
add a comment |
add a comment |
up vote
1
down vote
It's
$displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$
with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,
$displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$
and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.
It follows by coefficient comparison:
$$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$
$a_0=1$ , $,,a_1=0$
Using the definitions
$displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and
$displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
(as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)
we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .
Note:
$displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$
$displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$
...
In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with
the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and
the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .
add a comment |
up vote
1
down vote
It's
$displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$
with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,
$displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$
and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.
It follows by coefficient comparison:
$$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$
$a_0=1$ , $,,a_1=0$
Using the definitions
$displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and
$displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
(as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)
we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .
Note:
$displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$
$displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$
...
In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with
the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and
the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .
add a comment |
up vote
1
down vote
up vote
1
down vote
It's
$displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$
with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,
$displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$
and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.
It follows by coefficient comparison:
$$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$
$a_0=1$ , $,,a_1=0$
Using the definitions
$displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and
$displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
(as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)
we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .
Note:
$displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$
$displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$
...
In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with
the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and
the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .
It's
$displaystyleintlimits_0^{pi/2} (sin x)^z dx = {binom{frac{z}{2}}{frac{1}{2}}}^{-1} = 2^{-z} sinfrac{pi z}{2} sumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}$
with $enspacedisplaystyle (sin x)^z = sumlimits_{n=0}^infty z^n frac{(ln sin x)^n}{n!}enspace$ , $enspace displaystyle 2^{-z} = sumlimits_{n=0}^infty z^n frac{(-ln 2)^n}{n!}enspace$ ,
$displaystyle frac{1}{z}sinfrac{pi z}{2} = sumlimits_{,,n=0\n,text{even}}^infty z^n frac{(-1)^{n/2}(frac{pi}{2})^{n+1}}{(n+1)!}$
and $enspaceenspacedisplaystyle sumlimits_{n=0}^infty z^n a_n := zsumlimits_{k=0}^infty {binom z k} frac{(-1)^k}{z-2k}enspace$ , $enspace$ where $,a_n,$ is calculated below.
It follows by coefficient comparison:
$$ frac{d^n}{dz^n}{binom{frac{z}{2}}{frac{1}{2}}}^{-1}|_{z=0}= intlimits_0^{pi/2} (ln sin x)^n dx = n! sumlimits_{k=0}^n a_{n-k} sumlimits_{,,j=0 \ j,text{even}}^k frac{(-ln 2)^{k-j}}{(k-j)!} frac{(-1)^{j/2}(frac{pi}{2})^{j+1}}{(j+1)!}$$
$a_0=1$ , $,,a_1=0$
Using the definitions
$displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) enspaceenspace$ (see Stirling numbers of the first kind) $enspace$ and
$displaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)enspace $
(as in Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $)
we get for $,kgeq 2,$ the coefficients $enspacedisplaystyle a_k=sumlimits_{j=1}^{k-1}frac{(-1)^{j-1}}{2^{k-j}}frac{zeta_{j-1}(k-j+1)}{(j-1)!}enspace$ .
Note:
$displaystyle frac{zeta_{v}(n-v+2)}{v!}=frac{zeta_{n-v}(v+2)}{(n-v)!}enspaceenspace$ , $enspaceenspace$ special case $n:=v,$: $enspacedisplaystyle frac{zeta_{v}(2)}{v!}=zeta(v+2)$
$displaystyle frac{zeta_v(3)}{v!}= zeta_1(v+2)=(1+frac{v}{2})zeta(v+3) - frac{1}{2} sumlimits_{j=1}^v zeta(j+1)zeta(v+2-j)$
...
In here, part Expansion by harmonic numbers, is $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ with
the recursion $enspacedisplaystyle w(n,m)= delta_{m,0} + sumlimits_{j=0}^{m-1}(-1)^j frac{(m-2+j)!}{(m-2)!}H_{n-1}^{(j+1)} w(n,m-1-j) enspace$ and
the $,m$-order harmonic number $,H_n^{(m)},$ so that we can also write $enspacedisplaystyle zeta_n(m):=sumlimits_{k=1}^infty frac{w(k,n)}{k^m},$ .
edited Nov 22 at 16:19
answered Feb 6 at 15:21
user90369
8,173925
8,173925
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2638295%2fpower-logsine-integral-int-0-frac-pi2-lnn-sinxdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown