How do I find this eigenvector for a symmetric Matrix?












0












$begingroup$


I have a symmetric matrix A, whose eigenvalues are $lambda_1 = 6,~ lambda_2 = 3,~ lambda_3 = 2$ and eigenvectors are $vec{v_1} = (1, 1, 1),~vec{v_2} = (1,1,-1)$. How do I find the third eigenvector $vec{v_3}$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Eigenvectors of distinct eigenvalues are pairwise orthogonal.
    $endgroup$
    – xbh
    Dec 5 '18 at 10:46
















0












$begingroup$


I have a symmetric matrix A, whose eigenvalues are $lambda_1 = 6,~ lambda_2 = 3,~ lambda_3 = 2$ and eigenvectors are $vec{v_1} = (1, 1, 1),~vec{v_2} = (1,1,-1)$. How do I find the third eigenvector $vec{v_3}$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Eigenvectors of distinct eigenvalues are pairwise orthogonal.
    $endgroup$
    – xbh
    Dec 5 '18 at 10:46














0












0








0





$begingroup$


I have a symmetric matrix A, whose eigenvalues are $lambda_1 = 6,~ lambda_2 = 3,~ lambda_3 = 2$ and eigenvectors are $vec{v_1} = (1, 1, 1),~vec{v_2} = (1,1,-1)$. How do I find the third eigenvector $vec{v_3}$?










share|cite|improve this question









$endgroup$




I have a symmetric matrix A, whose eigenvalues are $lambda_1 = 6,~ lambda_2 = 3,~ lambda_3 = 2$ and eigenvectors are $vec{v_1} = (1, 1, 1),~vec{v_2} = (1,1,-1)$. How do I find the third eigenvector $vec{v_3}$?







matrices eigenvalues-eigenvectors symmetric-matrices






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 5 '18 at 10:45









Henri SödergårdHenri Södergård

1




1












  • $begingroup$
    Eigenvectors of distinct eigenvalues are pairwise orthogonal.
    $endgroup$
    – xbh
    Dec 5 '18 at 10:46


















  • $begingroup$
    Eigenvectors of distinct eigenvalues are pairwise orthogonal.
    $endgroup$
    – xbh
    Dec 5 '18 at 10:46
















$begingroup$
Eigenvectors of distinct eigenvalues are pairwise orthogonal.
$endgroup$
– xbh
Dec 5 '18 at 10:46




$begingroup$
Eigenvectors of distinct eigenvalues are pairwise orthogonal.
$endgroup$
– xbh
Dec 5 '18 at 10:46










1 Answer
1






active

oldest

votes


















0












$begingroup$

Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    But how do I use this in practice?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:08










  • $begingroup$
    By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:15










  • $begingroup$
    So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:23










  • $begingroup$
    Yes, indeed it is.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:24











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026924%2fhow-do-i-find-this-eigenvector-for-a-symmetric-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    But how do I use this in practice?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:08










  • $begingroup$
    By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:15










  • $begingroup$
    So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:23










  • $begingroup$
    Yes, indeed it is.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:24
















0












$begingroup$

Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    But how do I use this in practice?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:08










  • $begingroup$
    By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:15










  • $begingroup$
    So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:23










  • $begingroup$
    Yes, indeed it is.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:24














0












0








0





$begingroup$

Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.






share|cite|improve this answer









$endgroup$



Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 5 '18 at 10:46









José Carlos SantosJosé Carlos Santos

157k22126227




157k22126227












  • $begingroup$
    But how do I use this in practice?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:08










  • $begingroup$
    By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:15










  • $begingroup$
    So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:23










  • $begingroup$
    Yes, indeed it is.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:24


















  • $begingroup$
    But how do I use this in practice?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:08










  • $begingroup$
    By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:15










  • $begingroup$
    So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
    $endgroup$
    – Henri Södergård
    Dec 5 '18 at 11:23










  • $begingroup$
    Yes, indeed it is.
    $endgroup$
    – José Carlos Santos
    Dec 5 '18 at 11:24
















$begingroup$
But how do I use this in practice?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:08




$begingroup$
But how do I use this in practice?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:08












$begingroup$
By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:15




$begingroup$
By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:15












$begingroup$
So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:23




$begingroup$
So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:23












$begingroup$
Yes, indeed it is.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:24




$begingroup$
Yes, indeed it is.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:24


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026924%2fhow-do-i-find-this-eigenvector-for-a-symmetric-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten