How to change the system in four first order equations?












0












$begingroup$


Consider the coupled spring-mass system with a frictionless table, two masses $m_1$ and $m_2$, and three springs with spring constants $k_1, k_2$, and $k_3$ respectively. The equation of motion for the system are given by:



$m_1frac{d^2x_1}{dt^2}=-(k_1+k_2)x_1+k_2x_2$



$m_2frac{d^2x_2}{dt^2}=k_2x_1-(k_2+k_3)x_2$
enter image description here



Assume that the masses are $m_1 = 2$, $m_2 = frac{9}{4}$, and the spring constants are $k_1=1,k_2=3,k_3=frac{15}{4}$.



I substitute all value in the system above, and able to get



$frac{d^2x_1}{dt^2}=-2x_1+frac{3}{2}x_2$



$frac{d^2x_2}{dt^2}=frac{4}{3}x_1-3x_2$



Then how to convert the system about into four first order equations?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Consider the coupled spring-mass system with a frictionless table, two masses $m_1$ and $m_2$, and three springs with spring constants $k_1, k_2$, and $k_3$ respectively. The equation of motion for the system are given by:



    $m_1frac{d^2x_1}{dt^2}=-(k_1+k_2)x_1+k_2x_2$



    $m_2frac{d^2x_2}{dt^2}=k_2x_1-(k_2+k_3)x_2$
    enter image description here



    Assume that the masses are $m_1 = 2$, $m_2 = frac{9}{4}$, and the spring constants are $k_1=1,k_2=3,k_3=frac{15}{4}$.



    I substitute all value in the system above, and able to get



    $frac{d^2x_1}{dt^2}=-2x_1+frac{3}{2}x_2$



    $frac{d^2x_2}{dt^2}=frac{4}{3}x_1-3x_2$



    Then how to convert the system about into four first order equations?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Consider the coupled spring-mass system with a frictionless table, two masses $m_1$ and $m_2$, and three springs with spring constants $k_1, k_2$, and $k_3$ respectively. The equation of motion for the system are given by:



      $m_1frac{d^2x_1}{dt^2}=-(k_1+k_2)x_1+k_2x_2$



      $m_2frac{d^2x_2}{dt^2}=k_2x_1-(k_2+k_3)x_2$
      enter image description here



      Assume that the masses are $m_1 = 2$, $m_2 = frac{9}{4}$, and the spring constants are $k_1=1,k_2=3,k_3=frac{15}{4}$.



      I substitute all value in the system above, and able to get



      $frac{d^2x_1}{dt^2}=-2x_1+frac{3}{2}x_2$



      $frac{d^2x_2}{dt^2}=frac{4}{3}x_1-3x_2$



      Then how to convert the system about into four first order equations?










      share|cite|improve this question









      $endgroup$




      Consider the coupled spring-mass system with a frictionless table, two masses $m_1$ and $m_2$, and three springs with spring constants $k_1, k_2$, and $k_3$ respectively. The equation of motion for the system are given by:



      $m_1frac{d^2x_1}{dt^2}=-(k_1+k_2)x_1+k_2x_2$



      $m_2frac{d^2x_2}{dt^2}=k_2x_1-(k_2+k_3)x_2$
      enter image description here



      Assume that the masses are $m_1 = 2$, $m_2 = frac{9}{4}$, and the spring constants are $k_1=1,k_2=3,k_3=frac{15}{4}$.



      I substitute all value in the system above, and able to get



      $frac{d^2x_1}{dt^2}=-2x_1+frac{3}{2}x_2$



      $frac{d^2x_2}{dt^2}=frac{4}{3}x_1-3x_2$



      Then how to convert the system about into four first order equations?







      ordinary-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 5 '18 at 10:45









      LTYLTY

      285




      285






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          To convert it into a system of four first-order ODEs, you simply define the new variables $$x_3 = frac{dx_1}{dt} qquad x_4 = frac{dx_2}{dt}$$



          The system then becomes



          $$frac{dx_1}{dt} = x_3 qquad frac{dx_2}{dt} = x_4 qquad frac{dx_3}{dt}=-2x_1+frac{3}{2}x_2 qquad frac{dx_4}{dt}=frac{4}{3}x_1-3x_2$$





          However, I am not sure this actually helps you to solve the system. Instead, you might consider using



          begin{align}
          frac{d^2x_1}{dt^2} & =-2x_1+frac{3}{2}x_2 tag{1}\
          frac{d^2x_2}{dt^2} & =frac{4}{3}x_1-3x_2 tag{2}
          end{align}



          Do $frac{d^2}{dt^2}$ of equation $(1)$:



          $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 frac{d^2x_2}{dt^2}$$



          Plug in the expression for $frac{d^2x_2}{dt^2} $ from equation $(2)$:



          $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 bigg(frac{4}{3}x_1-3x_2bigg) = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 x_2$$



          Then use equation $(1)$ to plug in expression for $x_2$:



          $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 bigg(frac 23 frac{d^2x_1}{dt^2} + frac 43 x_1 bigg) = -5frac{d^2x_1}{dt^2} -4x_1$$



          $$implies frac{d^4x_1}{dt^4}+5frac{d^2x_1}{dt^2} + 4x_1=0$$



          This is now a homogeneous ODE with constant coefficients in $x_1$, which can easily be solved, giving



          $$x_1(t) = Acos (2t)+Bsin (2t) + Ccos (t) + Dsin (t)$$



          Plugging this back into equation $(1)$, we find



          $$x_2(t) = -frac 43 Acos (2t) -frac 43 Bsin (2t)+ frac 23 Ccos (t) + frac 23 Dsin (t)$$



          Finally, use the initial conditions (you should have four of them) to find the constants $A,B,C,D$.






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            The matrix $A=pmatrix{-2&frac32\frac43&-3}$ on the right side of the system has the characteristic polynomial
            $$
            0=(q+2)(q+3)-2=q^2+5q+4=(q+4)(q+1).
            $$

            For the eigenvalue $q=-1$ a left eigenvector is $(4,3)$ so that
            $$
            (4x_1+3x_2)''=-(4x_1+3x_2)implies 4x_1+3x_2=a_1cos(t)+b_1sin(t)
            $$

            For the eigenvalue $q=-4$ a left eigenvector is $(2,-3)$ so that
            $$
            (2x_1-3x_2)''=-4(2x_1-3x_2)implies 2x_1-3x_2=a_2cos(2t)+b_2sin(2)
            $$

            Now the solutions $x_1$, $x_2$ can be recombined and used to compare against the numerical solution of the first order system as per the other answer.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026925%2fhow-to-change-the-system-in-four-first-order-equations%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              To convert it into a system of four first-order ODEs, you simply define the new variables $$x_3 = frac{dx_1}{dt} qquad x_4 = frac{dx_2}{dt}$$



              The system then becomes



              $$frac{dx_1}{dt} = x_3 qquad frac{dx_2}{dt} = x_4 qquad frac{dx_3}{dt}=-2x_1+frac{3}{2}x_2 qquad frac{dx_4}{dt}=frac{4}{3}x_1-3x_2$$





              However, I am not sure this actually helps you to solve the system. Instead, you might consider using



              begin{align}
              frac{d^2x_1}{dt^2} & =-2x_1+frac{3}{2}x_2 tag{1}\
              frac{d^2x_2}{dt^2} & =frac{4}{3}x_1-3x_2 tag{2}
              end{align}



              Do $frac{d^2}{dt^2}$ of equation $(1)$:



              $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 frac{d^2x_2}{dt^2}$$



              Plug in the expression for $frac{d^2x_2}{dt^2} $ from equation $(2)$:



              $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 bigg(frac{4}{3}x_1-3x_2bigg) = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 x_2$$



              Then use equation $(1)$ to plug in expression for $x_2$:



              $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 bigg(frac 23 frac{d^2x_1}{dt^2} + frac 43 x_1 bigg) = -5frac{d^2x_1}{dt^2} -4x_1$$



              $$implies frac{d^4x_1}{dt^4}+5frac{d^2x_1}{dt^2} + 4x_1=0$$



              This is now a homogeneous ODE with constant coefficients in $x_1$, which can easily be solved, giving



              $$x_1(t) = Acos (2t)+Bsin (2t) + Ccos (t) + Dsin (t)$$



              Plugging this back into equation $(1)$, we find



              $$x_2(t) = -frac 43 Acos (2t) -frac 43 Bsin (2t)+ frac 23 Ccos (t) + frac 23 Dsin (t)$$



              Finally, use the initial conditions (you should have four of them) to find the constants $A,B,C,D$.






              share|cite|improve this answer











              $endgroup$


















                2












                $begingroup$

                To convert it into a system of four first-order ODEs, you simply define the new variables $$x_3 = frac{dx_1}{dt} qquad x_4 = frac{dx_2}{dt}$$



                The system then becomes



                $$frac{dx_1}{dt} = x_3 qquad frac{dx_2}{dt} = x_4 qquad frac{dx_3}{dt}=-2x_1+frac{3}{2}x_2 qquad frac{dx_4}{dt}=frac{4}{3}x_1-3x_2$$





                However, I am not sure this actually helps you to solve the system. Instead, you might consider using



                begin{align}
                frac{d^2x_1}{dt^2} & =-2x_1+frac{3}{2}x_2 tag{1}\
                frac{d^2x_2}{dt^2} & =frac{4}{3}x_1-3x_2 tag{2}
                end{align}



                Do $frac{d^2}{dt^2}$ of equation $(1)$:



                $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 frac{d^2x_2}{dt^2}$$



                Plug in the expression for $frac{d^2x_2}{dt^2} $ from equation $(2)$:



                $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 bigg(frac{4}{3}x_1-3x_2bigg) = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 x_2$$



                Then use equation $(1)$ to plug in expression for $x_2$:



                $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 bigg(frac 23 frac{d^2x_1}{dt^2} + frac 43 x_1 bigg) = -5frac{d^2x_1}{dt^2} -4x_1$$



                $$implies frac{d^4x_1}{dt^4}+5frac{d^2x_1}{dt^2} + 4x_1=0$$



                This is now a homogeneous ODE with constant coefficients in $x_1$, which can easily be solved, giving



                $$x_1(t) = Acos (2t)+Bsin (2t) + Ccos (t) + Dsin (t)$$



                Plugging this back into equation $(1)$, we find



                $$x_2(t) = -frac 43 Acos (2t) -frac 43 Bsin (2t)+ frac 23 Ccos (t) + frac 23 Dsin (t)$$



                Finally, use the initial conditions (you should have four of them) to find the constants $A,B,C,D$.






                share|cite|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  To convert it into a system of four first-order ODEs, you simply define the new variables $$x_3 = frac{dx_1}{dt} qquad x_4 = frac{dx_2}{dt}$$



                  The system then becomes



                  $$frac{dx_1}{dt} = x_3 qquad frac{dx_2}{dt} = x_4 qquad frac{dx_3}{dt}=-2x_1+frac{3}{2}x_2 qquad frac{dx_4}{dt}=frac{4}{3}x_1-3x_2$$





                  However, I am not sure this actually helps you to solve the system. Instead, you might consider using



                  begin{align}
                  frac{d^2x_1}{dt^2} & =-2x_1+frac{3}{2}x_2 tag{1}\
                  frac{d^2x_2}{dt^2} & =frac{4}{3}x_1-3x_2 tag{2}
                  end{align}



                  Do $frac{d^2}{dt^2}$ of equation $(1)$:



                  $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 frac{d^2x_2}{dt^2}$$



                  Plug in the expression for $frac{d^2x_2}{dt^2} $ from equation $(2)$:



                  $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 bigg(frac{4}{3}x_1-3x_2bigg) = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 x_2$$



                  Then use equation $(1)$ to plug in expression for $x_2$:



                  $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 bigg(frac 23 frac{d^2x_1}{dt^2} + frac 43 x_1 bigg) = -5frac{d^2x_1}{dt^2} -4x_1$$



                  $$implies frac{d^4x_1}{dt^4}+5frac{d^2x_1}{dt^2} + 4x_1=0$$



                  This is now a homogeneous ODE with constant coefficients in $x_1$, which can easily be solved, giving



                  $$x_1(t) = Acos (2t)+Bsin (2t) + Ccos (t) + Dsin (t)$$



                  Plugging this back into equation $(1)$, we find



                  $$x_2(t) = -frac 43 Acos (2t) -frac 43 Bsin (2t)+ frac 23 Ccos (t) + frac 23 Dsin (t)$$



                  Finally, use the initial conditions (you should have four of them) to find the constants $A,B,C,D$.






                  share|cite|improve this answer











                  $endgroup$



                  To convert it into a system of four first-order ODEs, you simply define the new variables $$x_3 = frac{dx_1}{dt} qquad x_4 = frac{dx_2}{dt}$$



                  The system then becomes



                  $$frac{dx_1}{dt} = x_3 qquad frac{dx_2}{dt} = x_4 qquad frac{dx_3}{dt}=-2x_1+frac{3}{2}x_2 qquad frac{dx_4}{dt}=frac{4}{3}x_1-3x_2$$





                  However, I am not sure this actually helps you to solve the system. Instead, you might consider using



                  begin{align}
                  frac{d^2x_1}{dt^2} & =-2x_1+frac{3}{2}x_2 tag{1}\
                  frac{d^2x_2}{dt^2} & =frac{4}{3}x_1-3x_2 tag{2}
                  end{align}



                  Do $frac{d^2}{dt^2}$ of equation $(1)$:



                  $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 frac{d^2x_2}{dt^2}$$



                  Plug in the expression for $frac{d^2x_2}{dt^2} $ from equation $(2)$:



                  $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2}+frac 32 bigg(frac{4}{3}x_1-3x_2bigg) = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 x_2$$



                  Then use equation $(1)$ to plug in expression for $x_2$:



                  $$frac{d^4x_1}{dt^4} = -2frac{d^2x_1}{dt^2} + 2x_1-frac 92 bigg(frac 23 frac{d^2x_1}{dt^2} + frac 43 x_1 bigg) = -5frac{d^2x_1}{dt^2} -4x_1$$



                  $$implies frac{d^4x_1}{dt^4}+5frac{d^2x_1}{dt^2} + 4x_1=0$$



                  This is now a homogeneous ODE with constant coefficients in $x_1$, which can easily be solved, giving



                  $$x_1(t) = Acos (2t)+Bsin (2t) + Ccos (t) + Dsin (t)$$



                  Plugging this back into equation $(1)$, we find



                  $$x_2(t) = -frac 43 Acos (2t) -frac 43 Bsin (2t)+ frac 23 Ccos (t) + frac 23 Dsin (t)$$



                  Finally, use the initial conditions (you should have four of them) to find the constants $A,B,C,D$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 5 '18 at 11:00

























                  answered Dec 5 '18 at 10:49









                  glowstonetreesglowstonetrees

                  2,336418




                  2,336418























                      0












                      $begingroup$

                      The matrix $A=pmatrix{-2&frac32\frac43&-3}$ on the right side of the system has the characteristic polynomial
                      $$
                      0=(q+2)(q+3)-2=q^2+5q+4=(q+4)(q+1).
                      $$

                      For the eigenvalue $q=-1$ a left eigenvector is $(4,3)$ so that
                      $$
                      (4x_1+3x_2)''=-(4x_1+3x_2)implies 4x_1+3x_2=a_1cos(t)+b_1sin(t)
                      $$

                      For the eigenvalue $q=-4$ a left eigenvector is $(2,-3)$ so that
                      $$
                      (2x_1-3x_2)''=-4(2x_1-3x_2)implies 2x_1-3x_2=a_2cos(2t)+b_2sin(2)
                      $$

                      Now the solutions $x_1$, $x_2$ can be recombined and used to compare against the numerical solution of the first order system as per the other answer.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        The matrix $A=pmatrix{-2&frac32\frac43&-3}$ on the right side of the system has the characteristic polynomial
                        $$
                        0=(q+2)(q+3)-2=q^2+5q+4=(q+4)(q+1).
                        $$

                        For the eigenvalue $q=-1$ a left eigenvector is $(4,3)$ so that
                        $$
                        (4x_1+3x_2)''=-(4x_1+3x_2)implies 4x_1+3x_2=a_1cos(t)+b_1sin(t)
                        $$

                        For the eigenvalue $q=-4$ a left eigenvector is $(2,-3)$ so that
                        $$
                        (2x_1-3x_2)''=-4(2x_1-3x_2)implies 2x_1-3x_2=a_2cos(2t)+b_2sin(2)
                        $$

                        Now the solutions $x_1$, $x_2$ can be recombined and used to compare against the numerical solution of the first order system as per the other answer.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          The matrix $A=pmatrix{-2&frac32\frac43&-3}$ on the right side of the system has the characteristic polynomial
                          $$
                          0=(q+2)(q+3)-2=q^2+5q+4=(q+4)(q+1).
                          $$

                          For the eigenvalue $q=-1$ a left eigenvector is $(4,3)$ so that
                          $$
                          (4x_1+3x_2)''=-(4x_1+3x_2)implies 4x_1+3x_2=a_1cos(t)+b_1sin(t)
                          $$

                          For the eigenvalue $q=-4$ a left eigenvector is $(2,-3)$ so that
                          $$
                          (2x_1-3x_2)''=-4(2x_1-3x_2)implies 2x_1-3x_2=a_2cos(2t)+b_2sin(2)
                          $$

                          Now the solutions $x_1$, $x_2$ can be recombined and used to compare against the numerical solution of the first order system as per the other answer.






                          share|cite|improve this answer









                          $endgroup$



                          The matrix $A=pmatrix{-2&frac32\frac43&-3}$ on the right side of the system has the characteristic polynomial
                          $$
                          0=(q+2)(q+3)-2=q^2+5q+4=(q+4)(q+1).
                          $$

                          For the eigenvalue $q=-1$ a left eigenvector is $(4,3)$ so that
                          $$
                          (4x_1+3x_2)''=-(4x_1+3x_2)implies 4x_1+3x_2=a_1cos(t)+b_1sin(t)
                          $$

                          For the eigenvalue $q=-4$ a left eigenvector is $(2,-3)$ so that
                          $$
                          (2x_1-3x_2)''=-4(2x_1-3x_2)implies 2x_1-3x_2=a_2cos(2t)+b_2sin(2)
                          $$

                          Now the solutions $x_1$, $x_2$ can be recombined and used to compare against the numerical solution of the first order system as per the other answer.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 5 '18 at 11:03









                          LutzLLutzL

                          57.6k42054




                          57.6k42054






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026925%2fhow-to-change-the-system-in-four-first-order-equations%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bundesstraße 106

                              Verónica Boquete

                              Ida-Boy-Ed-Garten