How to find $int_0^1x^3$ using sums and partitions?
$begingroup$
The problem statement is to. Calculate $int_0^1x^3dx$ by partitioning $[0,1]$ into subintervals of equal length.
This is my attempt:
Let $p=3.$ Let $delta x = 0.5$ so that the partition is $[0,0.5],[.5,1]$ Then $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$ Which then becomes $$Bigg[lim_{ntoinfty}dfrac{0.5-0}{n}sum_{k=0}^{n-1}Bigg(0+dfrac{k}{n}(0.5-0)Bigg)cdot0.5Bigg]+Bigg[lim_{ntoinfty}dfrac{1-0.5}{n}sum_{k=0}^{n-1}Bigg(0.5+dfrac{k}{n}(1-0.5)Bigg)cdot0.5Bigg]$$
which reduces to
$$0.5cdotBigg[Bigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg(dfrac{k}{n}(0.5)Bigg)Bigg]+Bigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg(0.5+dfrac{k}{n}(0.5)Bigg)Bigg]Bigg]$$
or even better, it reduces to
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg[Bigg(dfrac{k}{n}(0.5)Bigg)+Bigg(0.5+dfrac{k}{n}(0.5)Bigg)Bigg]Bigg]$$
or
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg[Bigg(dfrac{k}{n}Bigg)+0.5Bigg]Bigg]$$
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n^2}Bigg[sum_{k=0}^{n-1}k+sum_{k=0}^{n-1}0.5Bigg]Bigg]$$
which is
$$0.5^2cdotlim_{ntoinfty}dfrac{1}{n^2}Bigg(dfrac{(n-1)(n)}{2}+dfrac{n}{2}Bigg)$$
$$0.5^2cdotlim_{ntoinfty}dfrac{1}{2} = 0.25cdot0.25 = 0.0625$$
But I know the integral $int_0^1x^3=0.25$... What am I doing wrong here?
limits definite-integrals summation riemann-integration
$endgroup$
add a comment |
$begingroup$
The problem statement is to. Calculate $int_0^1x^3dx$ by partitioning $[0,1]$ into subintervals of equal length.
This is my attempt:
Let $p=3.$ Let $delta x = 0.5$ so that the partition is $[0,0.5],[.5,1]$ Then $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$ Which then becomes $$Bigg[lim_{ntoinfty}dfrac{0.5-0}{n}sum_{k=0}^{n-1}Bigg(0+dfrac{k}{n}(0.5-0)Bigg)cdot0.5Bigg]+Bigg[lim_{ntoinfty}dfrac{1-0.5}{n}sum_{k=0}^{n-1}Bigg(0.5+dfrac{k}{n}(1-0.5)Bigg)cdot0.5Bigg]$$
which reduces to
$$0.5cdotBigg[Bigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg(dfrac{k}{n}(0.5)Bigg)Bigg]+Bigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg(0.5+dfrac{k}{n}(0.5)Bigg)Bigg]Bigg]$$
or even better, it reduces to
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg[Bigg(dfrac{k}{n}(0.5)Bigg)+Bigg(0.5+dfrac{k}{n}(0.5)Bigg)Bigg]Bigg]$$
or
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg[Bigg(dfrac{k}{n}Bigg)+0.5Bigg]Bigg]$$
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n^2}Bigg[sum_{k=0}^{n-1}k+sum_{k=0}^{n-1}0.5Bigg]Bigg]$$
which is
$$0.5^2cdotlim_{ntoinfty}dfrac{1}{n^2}Bigg(dfrac{(n-1)(n)}{2}+dfrac{n}{2}Bigg)$$
$$0.5^2cdotlim_{ntoinfty}dfrac{1}{2} = 0.25cdot0.25 = 0.0625$$
But I know the integral $int_0^1x^3=0.25$... What am I doing wrong here?
limits definite-integrals summation riemann-integration
$endgroup$
2
$begingroup$
For example here $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$: why did you multiply by 0.5?. Same remark in the following with some divisions by $n$
$endgroup$
– Damien
Dec 5 '18 at 10:30
$begingroup$
@Damien Because the integrals had a $dx$ in them. For the sub integrals, I assumed $dx = 0.5$ as it went from $0$ to $0.5$ for the first one and $0.5$ to $1$ for the second one.
$endgroup$
– kaisa
Dec 5 '18 at 10:34
2
$begingroup$
$dx$ is not an actual value. It just represents a differential length. You can think of it as "summing over $x$"
$endgroup$
– glowstonetrees
Dec 5 '18 at 10:36
$begingroup$
You don't need to first divide the segment by 2. Just directly divide it by $n$ ...
$endgroup$
– Damien
Dec 5 '18 at 10:41
add a comment |
$begingroup$
The problem statement is to. Calculate $int_0^1x^3dx$ by partitioning $[0,1]$ into subintervals of equal length.
This is my attempt:
Let $p=3.$ Let $delta x = 0.5$ so that the partition is $[0,0.5],[.5,1]$ Then $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$ Which then becomes $$Bigg[lim_{ntoinfty}dfrac{0.5-0}{n}sum_{k=0}^{n-1}Bigg(0+dfrac{k}{n}(0.5-0)Bigg)cdot0.5Bigg]+Bigg[lim_{ntoinfty}dfrac{1-0.5}{n}sum_{k=0}^{n-1}Bigg(0.5+dfrac{k}{n}(1-0.5)Bigg)cdot0.5Bigg]$$
which reduces to
$$0.5cdotBigg[Bigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg(dfrac{k}{n}(0.5)Bigg)Bigg]+Bigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg(0.5+dfrac{k}{n}(0.5)Bigg)Bigg]Bigg]$$
or even better, it reduces to
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg[Bigg(dfrac{k}{n}(0.5)Bigg)+Bigg(0.5+dfrac{k}{n}(0.5)Bigg)Bigg]Bigg]$$
or
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg[Bigg(dfrac{k}{n}Bigg)+0.5Bigg]Bigg]$$
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n^2}Bigg[sum_{k=0}^{n-1}k+sum_{k=0}^{n-1}0.5Bigg]Bigg]$$
which is
$$0.5^2cdotlim_{ntoinfty}dfrac{1}{n^2}Bigg(dfrac{(n-1)(n)}{2}+dfrac{n}{2}Bigg)$$
$$0.5^2cdotlim_{ntoinfty}dfrac{1}{2} = 0.25cdot0.25 = 0.0625$$
But I know the integral $int_0^1x^3=0.25$... What am I doing wrong here?
limits definite-integrals summation riemann-integration
$endgroup$
The problem statement is to. Calculate $int_0^1x^3dx$ by partitioning $[0,1]$ into subintervals of equal length.
This is my attempt:
Let $p=3.$ Let $delta x = 0.5$ so that the partition is $[0,0.5],[.5,1]$ Then $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$ Which then becomes $$Bigg[lim_{ntoinfty}dfrac{0.5-0}{n}sum_{k=0}^{n-1}Bigg(0+dfrac{k}{n}(0.5-0)Bigg)cdot0.5Bigg]+Bigg[lim_{ntoinfty}dfrac{1-0.5}{n}sum_{k=0}^{n-1}Bigg(0.5+dfrac{k}{n}(1-0.5)Bigg)cdot0.5Bigg]$$
which reduces to
$$0.5cdotBigg[Bigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg(dfrac{k}{n}(0.5)Bigg)Bigg]+Bigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg(0.5+dfrac{k}{n}(0.5)Bigg)Bigg]Bigg]$$
or even better, it reduces to
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg[Bigg(dfrac{k}{n}(0.5)Bigg)+Bigg(0.5+dfrac{k}{n}(0.5)Bigg)Bigg]Bigg]$$
or
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n}sum_{k=0}^{n-1}Bigg[Bigg(dfrac{k}{n}Bigg)+0.5Bigg]Bigg]$$
$$0.5cdotBigg[lim_{ntoinfty}dfrac{0.5}{n^2}Bigg[sum_{k=0}^{n-1}k+sum_{k=0}^{n-1}0.5Bigg]Bigg]$$
which is
$$0.5^2cdotlim_{ntoinfty}dfrac{1}{n^2}Bigg(dfrac{(n-1)(n)}{2}+dfrac{n}{2}Bigg)$$
$$0.5^2cdotlim_{ntoinfty}dfrac{1}{2} = 0.25cdot0.25 = 0.0625$$
But I know the integral $int_0^1x^3=0.25$... What am I doing wrong here?
limits definite-integrals summation riemann-integration
limits definite-integrals summation riemann-integration
edited Dec 5 '18 at 10:45
José Carlos Santos
157k22126227
157k22126227
asked Dec 5 '18 at 10:26
kaisakaisa
2019
2019
2
$begingroup$
For example here $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$: why did you multiply by 0.5?. Same remark in the following with some divisions by $n$
$endgroup$
– Damien
Dec 5 '18 at 10:30
$begingroup$
@Damien Because the integrals had a $dx$ in them. For the sub integrals, I assumed $dx = 0.5$ as it went from $0$ to $0.5$ for the first one and $0.5$ to $1$ for the second one.
$endgroup$
– kaisa
Dec 5 '18 at 10:34
2
$begingroup$
$dx$ is not an actual value. It just represents a differential length. You can think of it as "summing over $x$"
$endgroup$
– glowstonetrees
Dec 5 '18 at 10:36
$begingroup$
You don't need to first divide the segment by 2. Just directly divide it by $n$ ...
$endgroup$
– Damien
Dec 5 '18 at 10:41
add a comment |
2
$begingroup$
For example here $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$: why did you multiply by 0.5?. Same remark in the following with some divisions by $n$
$endgroup$
– Damien
Dec 5 '18 at 10:30
$begingroup$
@Damien Because the integrals had a $dx$ in them. For the sub integrals, I assumed $dx = 0.5$ as it went from $0$ to $0.5$ for the first one and $0.5$ to $1$ for the second one.
$endgroup$
– kaisa
Dec 5 '18 at 10:34
2
$begingroup$
$dx$ is not an actual value. It just represents a differential length. You can think of it as "summing over $x$"
$endgroup$
– glowstonetrees
Dec 5 '18 at 10:36
$begingroup$
You don't need to first divide the segment by 2. Just directly divide it by $n$ ...
$endgroup$
– Damien
Dec 5 '18 at 10:41
2
2
$begingroup$
For example here $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$: why did you multiply by 0.5?. Same remark in the following with some divisions by $n$
$endgroup$
– Damien
Dec 5 '18 at 10:30
$begingroup$
For example here $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$: why did you multiply by 0.5?. Same remark in the following with some divisions by $n$
$endgroup$
– Damien
Dec 5 '18 at 10:30
$begingroup$
@Damien Because the integrals had a $dx$ in them. For the sub integrals, I assumed $dx = 0.5$ as it went from $0$ to $0.5$ for the first one and $0.5$ to $1$ for the second one.
$endgroup$
– kaisa
Dec 5 '18 at 10:34
$begingroup$
@Damien Because the integrals had a $dx$ in them. For the sub integrals, I assumed $dx = 0.5$ as it went from $0$ to $0.5$ for the first one and $0.5$ to $1$ for the second one.
$endgroup$
– kaisa
Dec 5 '18 at 10:34
2
2
$begingroup$
$dx$ is not an actual value. It just represents a differential length. You can think of it as "summing over $x$"
$endgroup$
– glowstonetrees
Dec 5 '18 at 10:36
$begingroup$
$dx$ is not an actual value. It just represents a differential length. You can think of it as "summing over $x$"
$endgroup$
– glowstonetrees
Dec 5 '18 at 10:36
$begingroup$
You don't need to first divide the segment by 2. Just directly divide it by $n$ ...
$endgroup$
– Damien
Dec 5 '18 at 10:41
$begingroup$
You don't need to first divide the segment by 2. Just directly divide it by $n$ ...
$endgroup$
– Damien
Dec 5 '18 at 10:41
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
That's not what “using partitions” mean. It means to use the definition of the Riemann integral.
So, let $P_n=left{0,frac1n,frac2n,ldots,1right}$. The upper sum with respect to this partition isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac knright)^3&=frac1{n^4}sum_{k=1}^nk^3\&=frac{n^4+2n^3+n^2}{4n^4}\&=frac14+frac1{2n}+frac1{4n^2}end{align}whereas the lower sum isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac{k-1}nright)^3&=frac1{n^4}sum_{k=0}^{n-1}k^3\&=frac{n^4-2n^3+n^2}{4n^4}\&=frac14-frac1{2n}+frac1{4n^2}.end{align}Since$$lim_{ntoinfty}frac14+frac1{2n}+frac1{4n^2}=lim_{ntoinfty}frac14-frac1{2n}+frac1{4n^2}=frac14,$$then$$int_0^1x^3,mathrm dx=frac14.$$
$endgroup$
add a comment |
$begingroup$
Since $n^3=6binom{n+1}{3}+binom{n}{1}$ we have $sum_{n=1}^{N}n^3 = 6binom{N+2}{4}+binom{N+1}{2} = frac{N^2(N+1)^2}{4}$. It follows that
$$ int_{0}^{1}x^3,dx = lim_{Nto +infty}frac{1}{N}sum_{k=1}^{N}left(frac{k}{N}right)^3 = lim_{Nto +infty}frac{N^2(N+1)^2}{4N^4}=frac{1}{4}.$$
Since for any $minmathbb{N}$ we have that $sum_{n=1}^{N}n^m$ is a polynomial in the $N$ variable whose leading term equals $frac{N^{m+1}}{m+1}$, the very same argument ensures that $int_{0}^{1}x^m,dx = frac{1}{m+1}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026910%2fhow-to-find-int-01x3-using-sums-and-partitions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
That's not what “using partitions” mean. It means to use the definition of the Riemann integral.
So, let $P_n=left{0,frac1n,frac2n,ldots,1right}$. The upper sum with respect to this partition isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac knright)^3&=frac1{n^4}sum_{k=1}^nk^3\&=frac{n^4+2n^3+n^2}{4n^4}\&=frac14+frac1{2n}+frac1{4n^2}end{align}whereas the lower sum isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac{k-1}nright)^3&=frac1{n^4}sum_{k=0}^{n-1}k^3\&=frac{n^4-2n^3+n^2}{4n^4}\&=frac14-frac1{2n}+frac1{4n^2}.end{align}Since$$lim_{ntoinfty}frac14+frac1{2n}+frac1{4n^2}=lim_{ntoinfty}frac14-frac1{2n}+frac1{4n^2}=frac14,$$then$$int_0^1x^3,mathrm dx=frac14.$$
$endgroup$
add a comment |
$begingroup$
That's not what “using partitions” mean. It means to use the definition of the Riemann integral.
So, let $P_n=left{0,frac1n,frac2n,ldots,1right}$. The upper sum with respect to this partition isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac knright)^3&=frac1{n^4}sum_{k=1}^nk^3\&=frac{n^4+2n^3+n^2}{4n^4}\&=frac14+frac1{2n}+frac1{4n^2}end{align}whereas the lower sum isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac{k-1}nright)^3&=frac1{n^4}sum_{k=0}^{n-1}k^3\&=frac{n^4-2n^3+n^2}{4n^4}\&=frac14-frac1{2n}+frac1{4n^2}.end{align}Since$$lim_{ntoinfty}frac14+frac1{2n}+frac1{4n^2}=lim_{ntoinfty}frac14-frac1{2n}+frac1{4n^2}=frac14,$$then$$int_0^1x^3,mathrm dx=frac14.$$
$endgroup$
add a comment |
$begingroup$
That's not what “using partitions” mean. It means to use the definition of the Riemann integral.
So, let $P_n=left{0,frac1n,frac2n,ldots,1right}$. The upper sum with respect to this partition isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac knright)^3&=frac1{n^4}sum_{k=1}^nk^3\&=frac{n^4+2n^3+n^2}{4n^4}\&=frac14+frac1{2n}+frac1{4n^2}end{align}whereas the lower sum isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac{k-1}nright)^3&=frac1{n^4}sum_{k=0}^{n-1}k^3\&=frac{n^4-2n^3+n^2}{4n^4}\&=frac14-frac1{2n}+frac1{4n^2}.end{align}Since$$lim_{ntoinfty}frac14+frac1{2n}+frac1{4n^2}=lim_{ntoinfty}frac14-frac1{2n}+frac1{4n^2}=frac14,$$then$$int_0^1x^3,mathrm dx=frac14.$$
$endgroup$
That's not what “using partitions” mean. It means to use the definition of the Riemann integral.
So, let $P_n=left{0,frac1n,frac2n,ldots,1right}$. The upper sum with respect to this partition isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac knright)^3&=frac1{n^4}sum_{k=1}^nk^3\&=frac{n^4+2n^3+n^2}{4n^4}\&=frac14+frac1{2n}+frac1{4n^2}end{align}whereas the lower sum isbegin{align}sum_{k=1}^nfrac1ntimesleft(frac{k-1}nright)^3&=frac1{n^4}sum_{k=0}^{n-1}k^3\&=frac{n^4-2n^3+n^2}{4n^4}\&=frac14-frac1{2n}+frac1{4n^2}.end{align}Since$$lim_{ntoinfty}frac14+frac1{2n}+frac1{4n^2}=lim_{ntoinfty}frac14-frac1{2n}+frac1{4n^2}=frac14,$$then$$int_0^1x^3,mathrm dx=frac14.$$
answered Dec 5 '18 at 10:42
José Carlos SantosJosé Carlos Santos
157k22126227
157k22126227
add a comment |
add a comment |
$begingroup$
Since $n^3=6binom{n+1}{3}+binom{n}{1}$ we have $sum_{n=1}^{N}n^3 = 6binom{N+2}{4}+binom{N+1}{2} = frac{N^2(N+1)^2}{4}$. It follows that
$$ int_{0}^{1}x^3,dx = lim_{Nto +infty}frac{1}{N}sum_{k=1}^{N}left(frac{k}{N}right)^3 = lim_{Nto +infty}frac{N^2(N+1)^2}{4N^4}=frac{1}{4}.$$
Since for any $minmathbb{N}$ we have that $sum_{n=1}^{N}n^m$ is a polynomial in the $N$ variable whose leading term equals $frac{N^{m+1}}{m+1}$, the very same argument ensures that $int_{0}^{1}x^m,dx = frac{1}{m+1}$.
$endgroup$
add a comment |
$begingroup$
Since $n^3=6binom{n+1}{3}+binom{n}{1}$ we have $sum_{n=1}^{N}n^3 = 6binom{N+2}{4}+binom{N+1}{2} = frac{N^2(N+1)^2}{4}$. It follows that
$$ int_{0}^{1}x^3,dx = lim_{Nto +infty}frac{1}{N}sum_{k=1}^{N}left(frac{k}{N}right)^3 = lim_{Nto +infty}frac{N^2(N+1)^2}{4N^4}=frac{1}{4}.$$
Since for any $minmathbb{N}$ we have that $sum_{n=1}^{N}n^m$ is a polynomial in the $N$ variable whose leading term equals $frac{N^{m+1}}{m+1}$, the very same argument ensures that $int_{0}^{1}x^m,dx = frac{1}{m+1}$.
$endgroup$
add a comment |
$begingroup$
Since $n^3=6binom{n+1}{3}+binom{n}{1}$ we have $sum_{n=1}^{N}n^3 = 6binom{N+2}{4}+binom{N+1}{2} = frac{N^2(N+1)^2}{4}$. It follows that
$$ int_{0}^{1}x^3,dx = lim_{Nto +infty}frac{1}{N}sum_{k=1}^{N}left(frac{k}{N}right)^3 = lim_{Nto +infty}frac{N^2(N+1)^2}{4N^4}=frac{1}{4}.$$
Since for any $minmathbb{N}$ we have that $sum_{n=1}^{N}n^m$ is a polynomial in the $N$ variable whose leading term equals $frac{N^{m+1}}{m+1}$, the very same argument ensures that $int_{0}^{1}x^m,dx = frac{1}{m+1}$.
$endgroup$
Since $n^3=6binom{n+1}{3}+binom{n}{1}$ we have $sum_{n=1}^{N}n^3 = 6binom{N+2}{4}+binom{N+1}{2} = frac{N^2(N+1)^2}{4}$. It follows that
$$ int_{0}^{1}x^3,dx = lim_{Nto +infty}frac{1}{N}sum_{k=1}^{N}left(frac{k}{N}right)^3 = lim_{Nto +infty}frac{N^2(N+1)^2}{4N^4}=frac{1}{4}.$$
Since for any $minmathbb{N}$ we have that $sum_{n=1}^{N}n^m$ is a polynomial in the $N$ variable whose leading term equals $frac{N^{m+1}}{m+1}$, the very same argument ensures that $int_{0}^{1}x^m,dx = frac{1}{m+1}$.
answered Dec 5 '18 at 22:22
Jack D'AurizioJack D'Aurizio
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026910%2fhow-to-find-int-01x3-using-sums-and-partitions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
For example here $int_0^1x^3dx=int_0^{0.5}x^3cdot0.5+int_{0.5}^1x^3cdot0.5$: why did you multiply by 0.5?. Same remark in the following with some divisions by $n$
$endgroup$
– Damien
Dec 5 '18 at 10:30
$begingroup$
@Damien Because the integrals had a $dx$ in them. For the sub integrals, I assumed $dx = 0.5$ as it went from $0$ to $0.5$ for the first one and $0.5$ to $1$ for the second one.
$endgroup$
– kaisa
Dec 5 '18 at 10:34
2
$begingroup$
$dx$ is not an actual value. It just represents a differential length. You can think of it as "summing over $x$"
$endgroup$
– glowstonetrees
Dec 5 '18 at 10:36
$begingroup$
You don't need to first divide the segment by 2. Just directly divide it by $n$ ...
$endgroup$
– Damien
Dec 5 '18 at 10:41