Is there a shortcut to computing $text{Cov}(X, Y)$ if we have $mathbb{E}[X]$, $mathbb{E}[Y]$ and...












1












$begingroup$


Is there a shortcut to computing $text{Cov}(X, Y)$ if we have $mathbb{E}[X]$, $mathbb{E}[Y]$ and $mathbb{E}[Ymid X]$?



I have the joint PDF



$$f(x, y) = begin{cases} lambda e^{-lambda x}/x & text{ if } 0 < y < x, x in (0, infty) \[1em] 0, &text{ otherwise.} end{cases} $$



I want to find $text{Cov}(X, Y)$. I have $mathbb{E}[X] = 1/lambda$, $mathbb{E}[Ymid X] = x/2$ and $mathbb{E}[Y] = 1/2lambda$.



I need $mathbb{E}[XY]$ to compute $text{Cov}(X, Y) = mathbb{E}[XY] - mathbb{E}[X]mathbb{E}[Y].$



Do I need to compute the double integral for it? or is there a shortcut?





My attempt:



$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} (xy) lambda e^{-lambda x}/x mathop{dy} mathop{dx}$$



$$= int_{0}^{infty} lambda e^{-lambda x} int_{0}^{x} ymathop{dy}mathop{dx} $$



$$= frac{lambda }{2}int_{0}^{infty} x^{2}e^{-lambda x} mathop{dx}$$



Then let $u = x^{2}, mathop{du} = 2x mathop{dx}$, $mathop{dv} = e^{-lambda x}, v = -e^{-lambda x}/lambda$. We have



$$int_{0}^{infty} x^{2} e^{-lambda x} mathop{dx} $$



$$= -frac{x^{2}e^{-lambda x}}{lambda} + int_{0}^{infty} frac{2xe^{-lambda x}}{lambda} mathop{dx} $$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Best I can do: $$mathbb{E}[XY] = mathbb{E}[mathbb{E}[XY mid X]] = mathbb{E}[Xmathbb{E}[Y mid X]] = mathbb{E}[X^2/2] = dfrac{1}{2}mathbb{E}[X^2]$$
    $endgroup$
    – Clarinetist
    Dec 4 '18 at 20:56










  • $begingroup$
    that will work for me. i can get the variance because i know $X sim text{Exp}(lambda)$. then I can do $mathbb{E}[X^{2}] = (text{Var}(X) + mathbb{E}[X]^{2})$
    $endgroup$
    – joseph
    Dec 4 '18 at 20:58








  • 2




    $begingroup$
    The next step is to simplify even further the computations, noting that $$mathrm{Cov}(X,Y)=E(XY)-E(X)E(Y)=E(XE(Ymid X))-E(X)E(E(Ymid X))$$ that is, $$mathrm{Cov}(X,Y)=E(X(tfrac12X))-E(X)E(tfrac12X)=tfrac12mathrm{var}(X)$$
    $endgroup$
    – Did
    Dec 4 '18 at 21:17


















1












$begingroup$


Is there a shortcut to computing $text{Cov}(X, Y)$ if we have $mathbb{E}[X]$, $mathbb{E}[Y]$ and $mathbb{E}[Ymid X]$?



I have the joint PDF



$$f(x, y) = begin{cases} lambda e^{-lambda x}/x & text{ if } 0 < y < x, x in (0, infty) \[1em] 0, &text{ otherwise.} end{cases} $$



I want to find $text{Cov}(X, Y)$. I have $mathbb{E}[X] = 1/lambda$, $mathbb{E}[Ymid X] = x/2$ and $mathbb{E}[Y] = 1/2lambda$.



I need $mathbb{E}[XY]$ to compute $text{Cov}(X, Y) = mathbb{E}[XY] - mathbb{E}[X]mathbb{E}[Y].$



Do I need to compute the double integral for it? or is there a shortcut?





My attempt:



$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} (xy) lambda e^{-lambda x}/x mathop{dy} mathop{dx}$$



$$= int_{0}^{infty} lambda e^{-lambda x} int_{0}^{x} ymathop{dy}mathop{dx} $$



$$= frac{lambda }{2}int_{0}^{infty} x^{2}e^{-lambda x} mathop{dx}$$



Then let $u = x^{2}, mathop{du} = 2x mathop{dx}$, $mathop{dv} = e^{-lambda x}, v = -e^{-lambda x}/lambda$. We have



$$int_{0}^{infty} x^{2} e^{-lambda x} mathop{dx} $$



$$= -frac{x^{2}e^{-lambda x}}{lambda} + int_{0}^{infty} frac{2xe^{-lambda x}}{lambda} mathop{dx} $$










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Best I can do: $$mathbb{E}[XY] = mathbb{E}[mathbb{E}[XY mid X]] = mathbb{E}[Xmathbb{E}[Y mid X]] = mathbb{E}[X^2/2] = dfrac{1}{2}mathbb{E}[X^2]$$
    $endgroup$
    – Clarinetist
    Dec 4 '18 at 20:56










  • $begingroup$
    that will work for me. i can get the variance because i know $X sim text{Exp}(lambda)$. then I can do $mathbb{E}[X^{2}] = (text{Var}(X) + mathbb{E}[X]^{2})$
    $endgroup$
    – joseph
    Dec 4 '18 at 20:58








  • 2




    $begingroup$
    The next step is to simplify even further the computations, noting that $$mathrm{Cov}(X,Y)=E(XY)-E(X)E(Y)=E(XE(Ymid X))-E(X)E(E(Ymid X))$$ that is, $$mathrm{Cov}(X,Y)=E(X(tfrac12X))-E(X)E(tfrac12X)=tfrac12mathrm{var}(X)$$
    $endgroup$
    – Did
    Dec 4 '18 at 21:17
















1












1








1





$begingroup$


Is there a shortcut to computing $text{Cov}(X, Y)$ if we have $mathbb{E}[X]$, $mathbb{E}[Y]$ and $mathbb{E}[Ymid X]$?



I have the joint PDF



$$f(x, y) = begin{cases} lambda e^{-lambda x}/x & text{ if } 0 < y < x, x in (0, infty) \[1em] 0, &text{ otherwise.} end{cases} $$



I want to find $text{Cov}(X, Y)$. I have $mathbb{E}[X] = 1/lambda$, $mathbb{E}[Ymid X] = x/2$ and $mathbb{E}[Y] = 1/2lambda$.



I need $mathbb{E}[XY]$ to compute $text{Cov}(X, Y) = mathbb{E}[XY] - mathbb{E}[X]mathbb{E}[Y].$



Do I need to compute the double integral for it? or is there a shortcut?





My attempt:



$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} (xy) lambda e^{-lambda x}/x mathop{dy} mathop{dx}$$



$$= int_{0}^{infty} lambda e^{-lambda x} int_{0}^{x} ymathop{dy}mathop{dx} $$



$$= frac{lambda }{2}int_{0}^{infty} x^{2}e^{-lambda x} mathop{dx}$$



Then let $u = x^{2}, mathop{du} = 2x mathop{dx}$, $mathop{dv} = e^{-lambda x}, v = -e^{-lambda x}/lambda$. We have



$$int_{0}^{infty} x^{2} e^{-lambda x} mathop{dx} $$



$$= -frac{x^{2}e^{-lambda x}}{lambda} + int_{0}^{infty} frac{2xe^{-lambda x}}{lambda} mathop{dx} $$










share|cite|improve this question









$endgroup$




Is there a shortcut to computing $text{Cov}(X, Y)$ if we have $mathbb{E}[X]$, $mathbb{E}[Y]$ and $mathbb{E}[Ymid X]$?



I have the joint PDF



$$f(x, y) = begin{cases} lambda e^{-lambda x}/x & text{ if } 0 < y < x, x in (0, infty) \[1em] 0, &text{ otherwise.} end{cases} $$



I want to find $text{Cov}(X, Y)$. I have $mathbb{E}[X] = 1/lambda$, $mathbb{E}[Ymid X] = x/2$ and $mathbb{E}[Y] = 1/2lambda$.



I need $mathbb{E}[XY]$ to compute $text{Cov}(X, Y) = mathbb{E}[XY] - mathbb{E}[X]mathbb{E}[Y].$



Do I need to compute the double integral for it? or is there a shortcut?





My attempt:



$$mathbb{E}[XY] = int_{0}^{infty} int_{0}^{x} (xy) lambda e^{-lambda x}/x mathop{dy} mathop{dx}$$



$$= int_{0}^{infty} lambda e^{-lambda x} int_{0}^{x} ymathop{dy}mathop{dx} $$



$$= frac{lambda }{2}int_{0}^{infty} x^{2}e^{-lambda x} mathop{dx}$$



Then let $u = x^{2}, mathop{du} = 2x mathop{dx}$, $mathop{dv} = e^{-lambda x}, v = -e^{-lambda x}/lambda$. We have



$$int_{0}^{infty} x^{2} e^{-lambda x} mathop{dx} $$



$$= -frac{x^{2}e^{-lambda x}}{lambda} + int_{0}^{infty} frac{2xe^{-lambda x}}{lambda} mathop{dx} $$







probability probability-theory probability-distributions covariance






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 4 '18 at 20:52









josephjoseph

500111




500111








  • 2




    $begingroup$
    Best I can do: $$mathbb{E}[XY] = mathbb{E}[mathbb{E}[XY mid X]] = mathbb{E}[Xmathbb{E}[Y mid X]] = mathbb{E}[X^2/2] = dfrac{1}{2}mathbb{E}[X^2]$$
    $endgroup$
    – Clarinetist
    Dec 4 '18 at 20:56










  • $begingroup$
    that will work for me. i can get the variance because i know $X sim text{Exp}(lambda)$. then I can do $mathbb{E}[X^{2}] = (text{Var}(X) + mathbb{E}[X]^{2})$
    $endgroup$
    – joseph
    Dec 4 '18 at 20:58








  • 2




    $begingroup$
    The next step is to simplify even further the computations, noting that $$mathrm{Cov}(X,Y)=E(XY)-E(X)E(Y)=E(XE(Ymid X))-E(X)E(E(Ymid X))$$ that is, $$mathrm{Cov}(X,Y)=E(X(tfrac12X))-E(X)E(tfrac12X)=tfrac12mathrm{var}(X)$$
    $endgroup$
    – Did
    Dec 4 '18 at 21:17
















  • 2




    $begingroup$
    Best I can do: $$mathbb{E}[XY] = mathbb{E}[mathbb{E}[XY mid X]] = mathbb{E}[Xmathbb{E}[Y mid X]] = mathbb{E}[X^2/2] = dfrac{1}{2}mathbb{E}[X^2]$$
    $endgroup$
    – Clarinetist
    Dec 4 '18 at 20:56










  • $begingroup$
    that will work for me. i can get the variance because i know $X sim text{Exp}(lambda)$. then I can do $mathbb{E}[X^{2}] = (text{Var}(X) + mathbb{E}[X]^{2})$
    $endgroup$
    – joseph
    Dec 4 '18 at 20:58








  • 2




    $begingroup$
    The next step is to simplify even further the computations, noting that $$mathrm{Cov}(X,Y)=E(XY)-E(X)E(Y)=E(XE(Ymid X))-E(X)E(E(Ymid X))$$ that is, $$mathrm{Cov}(X,Y)=E(X(tfrac12X))-E(X)E(tfrac12X)=tfrac12mathrm{var}(X)$$
    $endgroup$
    – Did
    Dec 4 '18 at 21:17










2




2




$begingroup$
Best I can do: $$mathbb{E}[XY] = mathbb{E}[mathbb{E}[XY mid X]] = mathbb{E}[Xmathbb{E}[Y mid X]] = mathbb{E}[X^2/2] = dfrac{1}{2}mathbb{E}[X^2]$$
$endgroup$
– Clarinetist
Dec 4 '18 at 20:56




$begingroup$
Best I can do: $$mathbb{E}[XY] = mathbb{E}[mathbb{E}[XY mid X]] = mathbb{E}[Xmathbb{E}[Y mid X]] = mathbb{E}[X^2/2] = dfrac{1}{2}mathbb{E}[X^2]$$
$endgroup$
– Clarinetist
Dec 4 '18 at 20:56












$begingroup$
that will work for me. i can get the variance because i know $X sim text{Exp}(lambda)$. then I can do $mathbb{E}[X^{2}] = (text{Var}(X) + mathbb{E}[X]^{2})$
$endgroup$
– joseph
Dec 4 '18 at 20:58






$begingroup$
that will work for me. i can get the variance because i know $X sim text{Exp}(lambda)$. then I can do $mathbb{E}[X^{2}] = (text{Var}(X) + mathbb{E}[X]^{2})$
$endgroup$
– joseph
Dec 4 '18 at 20:58






2




2




$begingroup$
The next step is to simplify even further the computations, noting that $$mathrm{Cov}(X,Y)=E(XY)-E(X)E(Y)=E(XE(Ymid X))-E(X)E(E(Ymid X))$$ that is, $$mathrm{Cov}(X,Y)=E(X(tfrac12X))-E(X)E(tfrac12X)=tfrac12mathrm{var}(X)$$
$endgroup$
– Did
Dec 4 '18 at 21:17






$begingroup$
The next step is to simplify even further the computations, noting that $$mathrm{Cov}(X,Y)=E(XY)-E(X)E(Y)=E(XE(Ymid X))-E(X)E(E(Ymid X))$$ that is, $$mathrm{Cov}(X,Y)=E(X(tfrac12X))-E(X)E(tfrac12X)=tfrac12mathrm{var}(X)$$
$endgroup$
– Did
Dec 4 '18 at 21:17












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026152%2fis-there-a-shortcut-to-computing-textcovx-y-if-we-have-mathbbex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026152%2fis-there-a-shortcut-to-computing-textcovx-y-if-we-have-mathbbex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten