calculate exponential integral












0












$begingroup$


$$int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx$$
and $0<a_1<b_1,d>0,c>0$. How to calculate this integral? Or a lower bound of this integral?










share|cite|improve this question











$endgroup$












  • $begingroup$
    So you have $$ begin{split} I &= int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx \ &= int_0^c e^{-ax - d/x}dx - int_0^c e^{-bx - d/x}dx \ &= f(a,c,d) - f(b,c,d), end{split} $$ which reduces the problem to finding $$ f(a,c,d) = int_0^c e^{-ax - d/x}dx $$
    $endgroup$
    – gt6989b
    Dec 23 '18 at 4:23










  • $begingroup$
    Yes, you are right. But I failed in solving this sub-problem. It is integrable but the exact expression may be hard to derive. Hence, I am looking for a lower bound of the original problem.
    $endgroup$
    – Victor.Xiao
    Dec 23 '18 at 4:42
















0












$begingroup$


$$int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx$$
and $0<a_1<b_1,d>0,c>0$. How to calculate this integral? Or a lower bound of this integral?










share|cite|improve this question











$endgroup$












  • $begingroup$
    So you have $$ begin{split} I &= int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx \ &= int_0^c e^{-ax - d/x}dx - int_0^c e^{-bx - d/x}dx \ &= f(a,c,d) - f(b,c,d), end{split} $$ which reduces the problem to finding $$ f(a,c,d) = int_0^c e^{-ax - d/x}dx $$
    $endgroup$
    – gt6989b
    Dec 23 '18 at 4:23










  • $begingroup$
    Yes, you are right. But I failed in solving this sub-problem. It is integrable but the exact expression may be hard to derive. Hence, I am looking for a lower bound of the original problem.
    $endgroup$
    – Victor.Xiao
    Dec 23 '18 at 4:42














0












0








0





$begingroup$


$$int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx$$
and $0<a_1<b_1,d>0,c>0$. How to calculate this integral? Or a lower bound of this integral?










share|cite|improve this question











$endgroup$




$$int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx$$
and $0<a_1<b_1,d>0,c>0$. How to calculate this integral? Or a lower bound of this integral?







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 4:19









gt6989b

35.2k22557




35.2k22557










asked Dec 23 '18 at 3:51









Victor.XiaoVictor.Xiao

1




1












  • $begingroup$
    So you have $$ begin{split} I &= int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx \ &= int_0^c e^{-ax - d/x}dx - int_0^c e^{-bx - d/x}dx \ &= f(a,c,d) - f(b,c,d), end{split} $$ which reduces the problem to finding $$ f(a,c,d) = int_0^c e^{-ax - d/x}dx $$
    $endgroup$
    – gt6989b
    Dec 23 '18 at 4:23










  • $begingroup$
    Yes, you are right. But I failed in solving this sub-problem. It is integrable but the exact expression may be hard to derive. Hence, I am looking for a lower bound of the original problem.
    $endgroup$
    – Victor.Xiao
    Dec 23 '18 at 4:42


















  • $begingroup$
    So you have $$ begin{split} I &= int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx \ &= int_0^c e^{-ax - d/x}dx - int_0^c e^{-bx - d/x}dx \ &= f(a,c,d) - f(b,c,d), end{split} $$ which reduces the problem to finding $$ f(a,c,d) = int_0^c e^{-ax - d/x}dx $$
    $endgroup$
    – gt6989b
    Dec 23 '18 at 4:23










  • $begingroup$
    Yes, you are right. But I failed in solving this sub-problem. It is integrable but the exact expression may be hard to derive. Hence, I am looking for a lower bound of the original problem.
    $endgroup$
    – Victor.Xiao
    Dec 23 '18 at 4:42
















$begingroup$
So you have $$ begin{split} I &= int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx \ &= int_0^c e^{-ax - d/x}dx - int_0^c e^{-bx - d/x}dx \ &= f(a,c,d) - f(b,c,d), end{split} $$ which reduces the problem to finding $$ f(a,c,d) = int_0^c e^{-ax - d/x}dx $$
$endgroup$
– gt6989b
Dec 23 '18 at 4:23




$begingroup$
So you have $$ begin{split} I &= int_0^cleft(e^{-ax}- e^{-bx}right)e^{-d/x}dx \ &= int_0^c e^{-ax - d/x}dx - int_0^c e^{-bx - d/x}dx \ &= f(a,c,d) - f(b,c,d), end{split} $$ which reduces the problem to finding $$ f(a,c,d) = int_0^c e^{-ax - d/x}dx $$
$endgroup$
– gt6989b
Dec 23 '18 at 4:23












$begingroup$
Yes, you are right. But I failed in solving this sub-problem. It is integrable but the exact expression may be hard to derive. Hence, I am looking for a lower bound of the original problem.
$endgroup$
– Victor.Xiao
Dec 23 '18 at 4:42




$begingroup$
Yes, you are right. But I failed in solving this sub-problem. It is integrable but the exact expression may be hard to derive. Hence, I am looking for a lower bound of the original problem.
$endgroup$
– Victor.Xiao
Dec 23 '18 at 4:42










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050050%2fcalculate-exponential-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050050%2fcalculate-exponential-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten