How to do this Linear Approximation?












0












$begingroup$


this question has been giving me a little trouble:



Use a linear approximation to estimate the number $8.07^{2/3}$



I tried using $f(a)+f'(a)(x-a)$ but the answer I get ($4.02$) is apparently wrong. Any help would be appreciated!










share|cite|improve this question











$endgroup$












  • $begingroup$
    What did you use for $f,x,$ and $a$?
    $endgroup$
    – pwerth
    Dec 23 '18 at 3:21










  • $begingroup$
    Maybe you need one more digit after the decimal point
    $endgroup$
    – Andrei
    Dec 23 '18 at 3:21










  • $begingroup$
    @pwerth I used f: x^(2/3), a:8.07
    $endgroup$
    – vmahajan17
    Dec 23 '18 at 3:27










  • $begingroup$
    @Andrei that didn't work either
    $endgroup$
    – vmahajan17
    Dec 23 '18 at 3:27






  • 2




    $begingroup$
    $a=8$, then $8^{2/3}=4$
    $endgroup$
    – Andrei
    Dec 23 '18 at 3:38
















0












$begingroup$


this question has been giving me a little trouble:



Use a linear approximation to estimate the number $8.07^{2/3}$



I tried using $f(a)+f'(a)(x-a)$ but the answer I get ($4.02$) is apparently wrong. Any help would be appreciated!










share|cite|improve this question











$endgroup$












  • $begingroup$
    What did you use for $f,x,$ and $a$?
    $endgroup$
    – pwerth
    Dec 23 '18 at 3:21










  • $begingroup$
    Maybe you need one more digit after the decimal point
    $endgroup$
    – Andrei
    Dec 23 '18 at 3:21










  • $begingroup$
    @pwerth I used f: x^(2/3), a:8.07
    $endgroup$
    – vmahajan17
    Dec 23 '18 at 3:27










  • $begingroup$
    @Andrei that didn't work either
    $endgroup$
    – vmahajan17
    Dec 23 '18 at 3:27






  • 2




    $begingroup$
    $a=8$, then $8^{2/3}=4$
    $endgroup$
    – Andrei
    Dec 23 '18 at 3:38














0












0








0





$begingroup$


this question has been giving me a little trouble:



Use a linear approximation to estimate the number $8.07^{2/3}$



I tried using $f(a)+f'(a)(x-a)$ but the answer I get ($4.02$) is apparently wrong. Any help would be appreciated!










share|cite|improve this question











$endgroup$




this question has been giving me a little trouble:



Use a linear approximation to estimate the number $8.07^{2/3}$



I tried using $f(a)+f'(a)(x-a)$ but the answer I get ($4.02$) is apparently wrong. Any help would be appreciated!







calculus linear-approximation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 3:41









pwerth

3,300417




3,300417










asked Dec 23 '18 at 3:18









vmahajan17vmahajan17

18




18












  • $begingroup$
    What did you use for $f,x,$ and $a$?
    $endgroup$
    – pwerth
    Dec 23 '18 at 3:21










  • $begingroup$
    Maybe you need one more digit after the decimal point
    $endgroup$
    – Andrei
    Dec 23 '18 at 3:21










  • $begingroup$
    @pwerth I used f: x^(2/3), a:8.07
    $endgroup$
    – vmahajan17
    Dec 23 '18 at 3:27










  • $begingroup$
    @Andrei that didn't work either
    $endgroup$
    – vmahajan17
    Dec 23 '18 at 3:27






  • 2




    $begingroup$
    $a=8$, then $8^{2/3}=4$
    $endgroup$
    – Andrei
    Dec 23 '18 at 3:38


















  • $begingroup$
    What did you use for $f,x,$ and $a$?
    $endgroup$
    – pwerth
    Dec 23 '18 at 3:21










  • $begingroup$
    Maybe you need one more digit after the decimal point
    $endgroup$
    – Andrei
    Dec 23 '18 at 3:21










  • $begingroup$
    @pwerth I used f: x^(2/3), a:8.07
    $endgroup$
    – vmahajan17
    Dec 23 '18 at 3:27










  • $begingroup$
    @Andrei that didn't work either
    $endgroup$
    – vmahajan17
    Dec 23 '18 at 3:27






  • 2




    $begingroup$
    $a=8$, then $8^{2/3}=4$
    $endgroup$
    – Andrei
    Dec 23 '18 at 3:38
















$begingroup$
What did you use for $f,x,$ and $a$?
$endgroup$
– pwerth
Dec 23 '18 at 3:21




$begingroup$
What did you use for $f,x,$ and $a$?
$endgroup$
– pwerth
Dec 23 '18 at 3:21












$begingroup$
Maybe you need one more digit after the decimal point
$endgroup$
– Andrei
Dec 23 '18 at 3:21




$begingroup$
Maybe you need one more digit after the decimal point
$endgroup$
– Andrei
Dec 23 '18 at 3:21












$begingroup$
@pwerth I used f: x^(2/3), a:8.07
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27




$begingroup$
@pwerth I used f: x^(2/3), a:8.07
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27












$begingroup$
@Andrei that didn't work either
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27




$begingroup$
@Andrei that didn't work either
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27




2




2




$begingroup$
$a=8$, then $8^{2/3}=4$
$endgroup$
– Andrei
Dec 23 '18 at 3:38




$begingroup$
$a=8$, then $8^{2/3}=4$
$endgroup$
– Andrei
Dec 23 '18 at 3:38










2 Answers
2






active

oldest

votes


















1












$begingroup$

If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Take $f(x)=x^{2/3}$ and $a=8$. Then
    $$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$



    So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      should be $x^{-1/3}$
      $endgroup$
      – Andrei
      Dec 23 '18 at 3:44










    • $begingroup$
      @Andrei Yep, thanks
      $endgroup$
      – pwerth
      Dec 23 '18 at 3:45












    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050032%2fhow-to-do-this-linear-approximation%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$






        share|cite|improve this answer









        $endgroup$



        If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 23 '18 at 3:43









        AndreiAndrei

        13.2k21230




        13.2k21230























            1












            $begingroup$

            Take $f(x)=x^{2/3}$ and $a=8$. Then
            $$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$



            So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              should be $x^{-1/3}$
              $endgroup$
              – Andrei
              Dec 23 '18 at 3:44










            • $begingroup$
              @Andrei Yep, thanks
              $endgroup$
              – pwerth
              Dec 23 '18 at 3:45
















            1












            $begingroup$

            Take $f(x)=x^{2/3}$ and $a=8$. Then
            $$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$



            So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              should be $x^{-1/3}$
              $endgroup$
              – Andrei
              Dec 23 '18 at 3:44










            • $begingroup$
              @Andrei Yep, thanks
              $endgroup$
              – pwerth
              Dec 23 '18 at 3:45














            1












            1








            1





            $begingroup$

            Take $f(x)=x^{2/3}$ and $a=8$. Then
            $$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$



            So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$






            share|cite|improve this answer











            $endgroup$



            Take $f(x)=x^{2/3}$ and $a=8$. Then
            $$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$



            So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 23 '18 at 3:45

























            answered Dec 23 '18 at 3:42









            pwerthpwerth

            3,300417




            3,300417












            • $begingroup$
              should be $x^{-1/3}$
              $endgroup$
              – Andrei
              Dec 23 '18 at 3:44










            • $begingroup$
              @Andrei Yep, thanks
              $endgroup$
              – pwerth
              Dec 23 '18 at 3:45


















            • $begingroup$
              should be $x^{-1/3}$
              $endgroup$
              – Andrei
              Dec 23 '18 at 3:44










            • $begingroup$
              @Andrei Yep, thanks
              $endgroup$
              – pwerth
              Dec 23 '18 at 3:45
















            $begingroup$
            should be $x^{-1/3}$
            $endgroup$
            – Andrei
            Dec 23 '18 at 3:44




            $begingroup$
            should be $x^{-1/3}$
            $endgroup$
            – Andrei
            Dec 23 '18 at 3:44












            $begingroup$
            @Andrei Yep, thanks
            $endgroup$
            – pwerth
            Dec 23 '18 at 3:45




            $begingroup$
            @Andrei Yep, thanks
            $endgroup$
            – pwerth
            Dec 23 '18 at 3:45


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050032%2fhow-to-do-this-linear-approximation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten