How to do this Linear Approximation?
$begingroup$
this question has been giving me a little trouble:
Use a linear approximation to estimate the number $8.07^{2/3}$
I tried using $f(a)+f'(a)(x-a)$ but the answer I get ($4.02$) is apparently wrong. Any help would be appreciated!
calculus linear-approximation
$endgroup$
|
show 1 more comment
$begingroup$
this question has been giving me a little trouble:
Use a linear approximation to estimate the number $8.07^{2/3}$
I tried using $f(a)+f'(a)(x-a)$ but the answer I get ($4.02$) is apparently wrong. Any help would be appreciated!
calculus linear-approximation
$endgroup$
$begingroup$
What did you use for $f,x,$ and $a$?
$endgroup$
– pwerth
Dec 23 '18 at 3:21
$begingroup$
Maybe you need one more digit after the decimal point
$endgroup$
– Andrei
Dec 23 '18 at 3:21
$begingroup$
@pwerth I used f: x^(2/3), a:8.07
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
$begingroup$
@Andrei that didn't work either
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
2
$begingroup$
$a=8$, then $8^{2/3}=4$
$endgroup$
– Andrei
Dec 23 '18 at 3:38
|
show 1 more comment
$begingroup$
this question has been giving me a little trouble:
Use a linear approximation to estimate the number $8.07^{2/3}$
I tried using $f(a)+f'(a)(x-a)$ but the answer I get ($4.02$) is apparently wrong. Any help would be appreciated!
calculus linear-approximation
$endgroup$
this question has been giving me a little trouble:
Use a linear approximation to estimate the number $8.07^{2/3}$
I tried using $f(a)+f'(a)(x-a)$ but the answer I get ($4.02$) is apparently wrong. Any help would be appreciated!
calculus linear-approximation
calculus linear-approximation
edited Dec 23 '18 at 3:41
pwerth
3,300417
3,300417
asked Dec 23 '18 at 3:18
vmahajan17vmahajan17
18
18
$begingroup$
What did you use for $f,x,$ and $a$?
$endgroup$
– pwerth
Dec 23 '18 at 3:21
$begingroup$
Maybe you need one more digit after the decimal point
$endgroup$
– Andrei
Dec 23 '18 at 3:21
$begingroup$
@pwerth I used f: x^(2/3), a:8.07
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
$begingroup$
@Andrei that didn't work either
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
2
$begingroup$
$a=8$, then $8^{2/3}=4$
$endgroup$
– Andrei
Dec 23 '18 at 3:38
|
show 1 more comment
$begingroup$
What did you use for $f,x,$ and $a$?
$endgroup$
– pwerth
Dec 23 '18 at 3:21
$begingroup$
Maybe you need one more digit after the decimal point
$endgroup$
– Andrei
Dec 23 '18 at 3:21
$begingroup$
@pwerth I used f: x^(2/3), a:8.07
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
$begingroup$
@Andrei that didn't work either
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
2
$begingroup$
$a=8$, then $8^{2/3}=4$
$endgroup$
– Andrei
Dec 23 '18 at 3:38
$begingroup$
What did you use for $f,x,$ and $a$?
$endgroup$
– pwerth
Dec 23 '18 at 3:21
$begingroup$
What did you use for $f,x,$ and $a$?
$endgroup$
– pwerth
Dec 23 '18 at 3:21
$begingroup$
Maybe you need one more digit after the decimal point
$endgroup$
– Andrei
Dec 23 '18 at 3:21
$begingroup$
Maybe you need one more digit after the decimal point
$endgroup$
– Andrei
Dec 23 '18 at 3:21
$begingroup$
@pwerth I used f: x^(2/3), a:8.07
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
$begingroup$
@pwerth I used f: x^(2/3), a:8.07
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
$begingroup$
@Andrei that didn't work either
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
$begingroup$
@Andrei that didn't work either
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
2
2
$begingroup$
$a=8$, then $8^{2/3}=4$
$endgroup$
– Andrei
Dec 23 '18 at 3:38
$begingroup$
$a=8$, then $8^{2/3}=4$
$endgroup$
– Andrei
Dec 23 '18 at 3:38
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$
$endgroup$
add a comment |
$begingroup$
Take $f(x)=x^{2/3}$ and $a=8$. Then
$$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$
So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$
$endgroup$
$begingroup$
should be $x^{-1/3}$
$endgroup$
– Andrei
Dec 23 '18 at 3:44
$begingroup$
@Andrei Yep, thanks
$endgroup$
– pwerth
Dec 23 '18 at 3:45
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050032%2fhow-to-do-this-linear-approximation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$
$endgroup$
add a comment |
$begingroup$
If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$
$endgroup$
add a comment |
$begingroup$
If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$
$endgroup$
If you use $f(x)=x^{2/3}$, you have $f(x)approx f(a)+f'(a)(x-a)$. $f'(x)=frac 23 x^{-1/3}$. If you plug in $a=8$, $f'(8)=frac 13$, so $f(8.07)=4+0.07/3=4.02333$. The real answer is $4.023299$
answered Dec 23 '18 at 3:43
AndreiAndrei
13.2k21230
13.2k21230
add a comment |
add a comment |
$begingroup$
Take $f(x)=x^{2/3}$ and $a=8$. Then
$$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$
So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$
$endgroup$
$begingroup$
should be $x^{-1/3}$
$endgroup$
– Andrei
Dec 23 '18 at 3:44
$begingroup$
@Andrei Yep, thanks
$endgroup$
– pwerth
Dec 23 '18 at 3:45
add a comment |
$begingroup$
Take $f(x)=x^{2/3}$ and $a=8$. Then
$$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$
So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$
$endgroup$
$begingroup$
should be $x^{-1/3}$
$endgroup$
– Andrei
Dec 23 '18 at 3:44
$begingroup$
@Andrei Yep, thanks
$endgroup$
– pwerth
Dec 23 '18 at 3:45
add a comment |
$begingroup$
Take $f(x)=x^{2/3}$ and $a=8$. Then
$$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$
So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$
$endgroup$
Take $f(x)=x^{2/3}$ and $a=8$. Then
$$f(x)=x^{2/3} Rightarrow f'(x)=frac{2}{3}x^{-1/3} Rightarrow f'(a)=frac{2}{3}cdot 8^{-1/3}=frac{1}{3}$$
So $f(a)+f'(a)(x-a)=f(8)+frac{1}{3}(.07)=4+frac{1}{3}(.07)approx4.023$
edited Dec 23 '18 at 3:45
answered Dec 23 '18 at 3:42
pwerthpwerth
3,300417
3,300417
$begingroup$
should be $x^{-1/3}$
$endgroup$
– Andrei
Dec 23 '18 at 3:44
$begingroup$
@Andrei Yep, thanks
$endgroup$
– pwerth
Dec 23 '18 at 3:45
add a comment |
$begingroup$
should be $x^{-1/3}$
$endgroup$
– Andrei
Dec 23 '18 at 3:44
$begingroup$
@Andrei Yep, thanks
$endgroup$
– pwerth
Dec 23 '18 at 3:45
$begingroup$
should be $x^{-1/3}$
$endgroup$
– Andrei
Dec 23 '18 at 3:44
$begingroup$
should be $x^{-1/3}$
$endgroup$
– Andrei
Dec 23 '18 at 3:44
$begingroup$
@Andrei Yep, thanks
$endgroup$
– pwerth
Dec 23 '18 at 3:45
$begingroup$
@Andrei Yep, thanks
$endgroup$
– pwerth
Dec 23 '18 at 3:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050032%2fhow-to-do-this-linear-approximation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What did you use for $f,x,$ and $a$?
$endgroup$
– pwerth
Dec 23 '18 at 3:21
$begingroup$
Maybe you need one more digit after the decimal point
$endgroup$
– Andrei
Dec 23 '18 at 3:21
$begingroup$
@pwerth I used f: x^(2/3), a:8.07
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
$begingroup$
@Andrei that didn't work either
$endgroup$
– vmahajan17
Dec 23 '18 at 3:27
2
$begingroup$
$a=8$, then $8^{2/3}=4$
$endgroup$
– Andrei
Dec 23 '18 at 3:38