Convergence test $sum_{n=1}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}$












1












$begingroup$


How can I try to check the convergence of series
$$
sum_{n=2}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}
$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you sure the summation starts from $ n = 1$ ?
    $endgroup$
    – Ahmad Bazzi
    Dec 19 '18 at 19:20










  • $begingroup$
    No, from $n=2$, thanks
    $endgroup$
    – avan1235
    Dec 19 '18 at 19:21
















1












$begingroup$


How can I try to check the convergence of series
$$
sum_{n=2}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}
$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you sure the summation starts from $ n = 1$ ?
    $endgroup$
    – Ahmad Bazzi
    Dec 19 '18 at 19:20










  • $begingroup$
    No, from $n=2$, thanks
    $endgroup$
    – avan1235
    Dec 19 '18 at 19:21














1












1








1





$begingroup$


How can I try to check the convergence of series
$$
sum_{n=2}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}
$$










share|cite|improve this question











$endgroup$




How can I try to check the convergence of series
$$
sum_{n=2}^{+infty}(-1)^{leftlfloor{sqrt{n}}rightrfloor}frac{1}{ln(n)}
$$







sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 19:21







avan1235

















asked Dec 19 '18 at 19:16









avan1235avan1235

3528




3528












  • $begingroup$
    Are you sure the summation starts from $ n = 1$ ?
    $endgroup$
    – Ahmad Bazzi
    Dec 19 '18 at 19:20










  • $begingroup$
    No, from $n=2$, thanks
    $endgroup$
    – avan1235
    Dec 19 '18 at 19:21


















  • $begingroup$
    Are you sure the summation starts from $ n = 1$ ?
    $endgroup$
    – Ahmad Bazzi
    Dec 19 '18 at 19:20










  • $begingroup$
    No, from $n=2$, thanks
    $endgroup$
    – avan1235
    Dec 19 '18 at 19:21
















$begingroup$
Are you sure the summation starts from $ n = 1$ ?
$endgroup$
– Ahmad Bazzi
Dec 19 '18 at 19:20




$begingroup$
Are you sure the summation starts from $ n = 1$ ?
$endgroup$
– Ahmad Bazzi
Dec 19 '18 at 19:20












$begingroup$
No, from $n=2$, thanks
$endgroup$
– avan1235
Dec 19 '18 at 19:21




$begingroup$
No, from $n=2$, thanks
$endgroup$
– avan1235
Dec 19 '18 at 19:21










2 Answers
2






active

oldest

votes


















2












$begingroup$

Use Cauchy's convergence test and consider the following subsums
$$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    We can write the partial sums of the series of interest as



    $$begin{align}
    sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
    &=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
    end{align}$$



    It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates



    $$begin{align}
    S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
    &ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
    &=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
    end{align}$$



    We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as



    $$begin{align}
    T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
    &=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
    &ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
    end{align}$$



    From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.



    And we are done!






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Just curious ... was there a reason that you revoked accepting this answer?
      $endgroup$
      – Mark Viola
      Dec 23 '18 at 17:00











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046773%2fconvergence-test-sum-n-1-infty-1-left-lfloor-sqrtn-right-rfloor%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Use Cauchy's convergence test and consider the following subsums
    $$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Use Cauchy's convergence test and consider the following subsums
      $$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Use Cauchy's convergence test and consider the following subsums
        $$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$






        share|cite|improve this answer









        $endgroup$



        Use Cauchy's convergence test and consider the following subsums
        $$sum_{n=k^2}^{k^2+2k} (-1)^{lfloor sqrt n rfloor} frac{1}{ln(n)}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 19 '18 at 20:08









        Мокин ВасилийМокин Василий

        361




        361























            1












            $begingroup$

            We can write the partial sums of the series of interest as



            $$begin{align}
            sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
            &=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
            end{align}$$



            It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates



            $$begin{align}
            S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
            &ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
            &=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
            end{align}$$



            We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as



            $$begin{align}
            T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
            &=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
            &ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
            end{align}$$



            From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.



            And we are done!






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Just curious ... was there a reason that you revoked accepting this answer?
              $endgroup$
              – Mark Viola
              Dec 23 '18 at 17:00
















            1












            $begingroup$

            We can write the partial sums of the series of interest as



            $$begin{align}
            sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
            &=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
            end{align}$$



            It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates



            $$begin{align}
            S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
            &ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
            &=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
            end{align}$$



            We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as



            $$begin{align}
            T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
            &=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
            &ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
            end{align}$$



            From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.



            And we are done!






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Just curious ... was there a reason that you revoked accepting this answer?
              $endgroup$
              – Mark Viola
              Dec 23 '18 at 17:00














            1












            1








            1





            $begingroup$

            We can write the partial sums of the series of interest as



            $$begin{align}
            sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
            &=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
            end{align}$$



            It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates



            $$begin{align}
            S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
            &ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
            &=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
            end{align}$$



            We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as



            $$begin{align}
            T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
            &=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
            &ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
            end{align}$$



            From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.



            And we are done!






            share|cite|improve this answer











            $endgroup$



            We can write the partial sums of the series of interest as



            $$begin{align}
            sum_{n=4}^{(N+1)^2-1} frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}&=sum_{m=2}^N sum_{n=m^2}^{(m+1)^2-1}frac{(-1)^{lfloor sqrt nrfloor}}{log(n)}\\
            &=sum_{m=2}^N (-1)^m sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}tag1
            end{align}$$



            It is sufficient to show that the sequence $S_m=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}$, on the right-hand side of $(1)$, is increasing (and hence $lim_{mtoinfty}S_mne0$). Proceeding we have the crude estimates



            $$begin{align}
            S_m-S_{m-1}&=sum_{n=m^2}^{(m+1)^2-1} frac{1}{log(n)}-sum_{n=(m-1)^2}^{m^2-1} frac{1}{log(n)}\\
            &ge frac{2m+1}{2log(m+1)}-frac{2m-1}{2log(m-1)}\\
            &=frac{(m+1/2)log(m-1)-(m-1/2)log(m+1)}{log(m+1)log(m-1)}tag2
            end{align}$$



            We can estimate the numerator, $T_m$, of the expression on the right-hand side of $(2)$, $T_m=(m+1/2)log(m-1)-(m-1/2)log(m+1)$ as



            $$begin{align}
            T_m&=(m+1/2)log(m-1)-(m-1/2)log(m+1)&\\
            &=log(m)+mlogleft(1-frac2{m+1}right)+frac12logleft(1-frac1{m^2}right)\\
            &ge log(m)-frac{2m}{m-1}-frac1{m^2}tag3
            end{align}$$



            From $(3)$, $T_m>0$ whenever $m$ is sufficiently large ($m>9$)$.



            And we are done!







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 19 '18 at 21:32

























            answered Dec 19 '18 at 21:25









            Mark ViolaMark Viola

            134k1278176




            134k1278176












            • $begingroup$
              Just curious ... was there a reason that you revoked accepting this answer?
              $endgroup$
              – Mark Viola
              Dec 23 '18 at 17:00


















            • $begingroup$
              Just curious ... was there a reason that you revoked accepting this answer?
              $endgroup$
              – Mark Viola
              Dec 23 '18 at 17:00
















            $begingroup$
            Just curious ... was there a reason that you revoked accepting this answer?
            $endgroup$
            – Mark Viola
            Dec 23 '18 at 17:00




            $begingroup$
            Just curious ... was there a reason that you revoked accepting this answer?
            $endgroup$
            – Mark Viola
            Dec 23 '18 at 17:00


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046773%2fconvergence-test-sum-n-1-infty-1-left-lfloor-sqrtn-right-rfloor%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten