Proof that $ sum_{n=2}^{infty} frac{2}{3^n cdot (n^3-n)} = frac{-1}{2} + frac{4}{3}sum_{n=1}^{infty}...












1












$begingroup$


Task



Proof that $ sum_{n=2}^{infty} frac{2}{3^n cdot (n^3-n)} = -frac{1}{2} + frac{4}{3}sum_{n=1}^{infty} frac{1}{n cdot 3^n}$



About



Hi, I have been trying to solve this task since yesterday. I have idea that I can evaluate both sides and show that they are the same. I supposed $ sum_{n=1}^{infty} frac{1}{n cdot 3^n} $ there is formula for that.
So I want to evaluate in the same way left side. So I compute that



$$ sum_{n=2}^{infty} frac{2}{3^n cdot (n^3-n)} = sum_{n=2}^{infty} frac{1}{3^n cdot n (n-1)} - frac{1}{3^n cdot n (n+1)} $$
I am trying to transform it to use that formula:
$$ sum_{n=1}^{infty} frac{1}{ncdot p^n} = lnfrac{p}{p-1} $$
but I still defeat.
So please tell me, there are better ways to proof that or should I consider to change my field of study?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Task



    Proof that $ sum_{n=2}^{infty} frac{2}{3^n cdot (n^3-n)} = -frac{1}{2} + frac{4}{3}sum_{n=1}^{infty} frac{1}{n cdot 3^n}$



    About



    Hi, I have been trying to solve this task since yesterday. I have idea that I can evaluate both sides and show that they are the same. I supposed $ sum_{n=1}^{infty} frac{1}{n cdot 3^n} $ there is formula for that.
    So I want to evaluate in the same way left side. So I compute that



    $$ sum_{n=2}^{infty} frac{2}{3^n cdot (n^3-n)} = sum_{n=2}^{infty} frac{1}{3^n cdot n (n-1)} - frac{1}{3^n cdot n (n+1)} $$
    I am trying to transform it to use that formula:
    $$ sum_{n=1}^{infty} frac{1}{ncdot p^n} = lnfrac{p}{p-1} $$
    but I still defeat.
    So please tell me, there are better ways to proof that or should I consider to change my field of study?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Task



      Proof that $ sum_{n=2}^{infty} frac{2}{3^n cdot (n^3-n)} = -frac{1}{2} + frac{4}{3}sum_{n=1}^{infty} frac{1}{n cdot 3^n}$



      About



      Hi, I have been trying to solve this task since yesterday. I have idea that I can evaluate both sides and show that they are the same. I supposed $ sum_{n=1}^{infty} frac{1}{n cdot 3^n} $ there is formula for that.
      So I want to evaluate in the same way left side. So I compute that



      $$ sum_{n=2}^{infty} frac{2}{3^n cdot (n^3-n)} = sum_{n=2}^{infty} frac{1}{3^n cdot n (n-1)} - frac{1}{3^n cdot n (n+1)} $$
      I am trying to transform it to use that formula:
      $$ sum_{n=1}^{infty} frac{1}{ncdot p^n} = lnfrac{p}{p-1} $$
      but I still defeat.
      So please tell me, there are better ways to proof that or should I consider to change my field of study?










      share|cite|improve this question









      $endgroup$




      Task



      Proof that $ sum_{n=2}^{infty} frac{2}{3^n cdot (n^3-n)} = -frac{1}{2} + frac{4}{3}sum_{n=1}^{infty} frac{1}{n cdot 3^n}$



      About



      Hi, I have been trying to solve this task since yesterday. I have idea that I can evaluate both sides and show that they are the same. I supposed $ sum_{n=1}^{infty} frac{1}{n cdot 3^n} $ there is formula for that.
      So I want to evaluate in the same way left side. So I compute that



      $$ sum_{n=2}^{infty} frac{2}{3^n cdot (n^3-n)} = sum_{n=2}^{infty} frac{1}{3^n cdot n (n-1)} - frac{1}{3^n cdot n (n+1)} $$
      I am trying to transform it to use that formula:
      $$ sum_{n=1}^{infty} frac{1}{ncdot p^n} = lnfrac{p}{p-1} $$
      but I still defeat.
      So please tell me, there are better ways to proof that or should I consider to change my field of study?







      real-analysis proof-writing






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 19 '18 at 19:29









      VirtualUserVirtualUser

      1,096117




      1,096117






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Hints:



          $$n^3 - n = (n-1) n (n+1)$$



          $$frac{1}{n (n+1)} = frac{1}{n} - frac{1}{n+1}$$
          $$frac{1}{(n-1) n} = frac{1}{n-1} - frac{1}{n}$$
          $$frac{1}{(n-1)(n+1)} = frac{1/2}{n-1} - frac{1/2}{n+1}$$
          $$frac{1}{(n-1)n(n+1)} = frac{1}{(n-1)n} - frac{1}{(n-1)(n+1)} = frac{1}{n-1} - frac{1}{n} - frac{1/2}{n-1} + frac{1/2}{n+1} = frac{1/2}{n-1} - frac{1}{n} + frac{1/2}{n+1}$$



          $$frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n}
          + frac{1}{3^n (n+1)}$$



          Then try to combine terms when substituting this into the sum.




          There is probably a more elegant way to do the following computations... $$begin{align}sum_{n ge 2} frac{2}{3^n (n-1) n (n+1)} &= frac{1}{3^2} + left(frac{1}{3^3} - frac{2}{3^2}right)frac{1}{2} + sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} \ &= frac{1}{54} + left(3 - 2 + frac{1}{3}right)sum_{n ge 3} frac{1}{3^n n} \ &= frac{1}{54} + frac{4}{3} sum_{nge 3} frac{1}{3^n n} \ &= frac{1}{54} - frac{4}{3} left(frac{1}{3} + frac{1}{9 cdot 2} right) + frac{4}{3} sum_{nge 1} frac{1}{3^n n} \ &= - frac{1}{2} + frac{4}{3} sum_{nge 1} frac{1}{3^n n}. end{align}$$







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Can you explain how you get this? $ sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} $? I know that $ frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)} $ but you also take $1/n$ before and it transformed into factors like that: $ frac{1}{3^{n-1}} $
            $endgroup$
            – VirtualUser
            Dec 19 '18 at 20:36












          • $begingroup$
            @VirtualUser Try writing out the first few terms of the sum $sum_{n ge 2} left(frac{1}{3^n(n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)}right)$ explicitly and it should become clear.
            $endgroup$
            – angryavian
            Dec 20 '18 at 16:45










          • $begingroup$
            You have just sorted elements by n'th term, right?
            $endgroup$
            – VirtualUser
            Dec 20 '18 at 18:20



















          2












          $begingroup$

          hint



          $$frac{2}{n^3-n}=frac{-2}{n}+frac{1}{n-1}+frac{1}{n+1}$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046791%2fproof-that-sum-n-2-infty-frac23n-cdot-n3-n-frac-12-f%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Hints:



            $$n^3 - n = (n-1) n (n+1)$$



            $$frac{1}{n (n+1)} = frac{1}{n} - frac{1}{n+1}$$
            $$frac{1}{(n-1) n} = frac{1}{n-1} - frac{1}{n}$$
            $$frac{1}{(n-1)(n+1)} = frac{1/2}{n-1} - frac{1/2}{n+1}$$
            $$frac{1}{(n-1)n(n+1)} = frac{1}{(n-1)n} - frac{1}{(n-1)(n+1)} = frac{1}{n-1} - frac{1}{n} - frac{1/2}{n-1} + frac{1/2}{n+1} = frac{1/2}{n-1} - frac{1}{n} + frac{1/2}{n+1}$$



            $$frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n}
            + frac{1}{3^n (n+1)}$$



            Then try to combine terms when substituting this into the sum.




            There is probably a more elegant way to do the following computations... $$begin{align}sum_{n ge 2} frac{2}{3^n (n-1) n (n+1)} &= frac{1}{3^2} + left(frac{1}{3^3} - frac{2}{3^2}right)frac{1}{2} + sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} \ &= frac{1}{54} + left(3 - 2 + frac{1}{3}right)sum_{n ge 3} frac{1}{3^n n} \ &= frac{1}{54} + frac{4}{3} sum_{nge 3} frac{1}{3^n n} \ &= frac{1}{54} - frac{4}{3} left(frac{1}{3} + frac{1}{9 cdot 2} right) + frac{4}{3} sum_{nge 1} frac{1}{3^n n} \ &= - frac{1}{2} + frac{4}{3} sum_{nge 1} frac{1}{3^n n}. end{align}$$







            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Can you explain how you get this? $ sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} $? I know that $ frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)} $ but you also take $1/n$ before and it transformed into factors like that: $ frac{1}{3^{n-1}} $
              $endgroup$
              – VirtualUser
              Dec 19 '18 at 20:36












            • $begingroup$
              @VirtualUser Try writing out the first few terms of the sum $sum_{n ge 2} left(frac{1}{3^n(n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)}right)$ explicitly and it should become clear.
              $endgroup$
              – angryavian
              Dec 20 '18 at 16:45










            • $begingroup$
              You have just sorted elements by n'th term, right?
              $endgroup$
              – VirtualUser
              Dec 20 '18 at 18:20
















            1












            $begingroup$

            Hints:



            $$n^3 - n = (n-1) n (n+1)$$



            $$frac{1}{n (n+1)} = frac{1}{n} - frac{1}{n+1}$$
            $$frac{1}{(n-1) n} = frac{1}{n-1} - frac{1}{n}$$
            $$frac{1}{(n-1)(n+1)} = frac{1/2}{n-1} - frac{1/2}{n+1}$$
            $$frac{1}{(n-1)n(n+1)} = frac{1}{(n-1)n} - frac{1}{(n-1)(n+1)} = frac{1}{n-1} - frac{1}{n} - frac{1/2}{n-1} + frac{1/2}{n+1} = frac{1/2}{n-1} - frac{1}{n} + frac{1/2}{n+1}$$



            $$frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n}
            + frac{1}{3^n (n+1)}$$



            Then try to combine terms when substituting this into the sum.




            There is probably a more elegant way to do the following computations... $$begin{align}sum_{n ge 2} frac{2}{3^n (n-1) n (n+1)} &= frac{1}{3^2} + left(frac{1}{3^3} - frac{2}{3^2}right)frac{1}{2} + sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} \ &= frac{1}{54} + left(3 - 2 + frac{1}{3}right)sum_{n ge 3} frac{1}{3^n n} \ &= frac{1}{54} + frac{4}{3} sum_{nge 3} frac{1}{3^n n} \ &= frac{1}{54} - frac{4}{3} left(frac{1}{3} + frac{1}{9 cdot 2} right) + frac{4}{3} sum_{nge 1} frac{1}{3^n n} \ &= - frac{1}{2} + frac{4}{3} sum_{nge 1} frac{1}{3^n n}. end{align}$$







            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Can you explain how you get this? $ sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} $? I know that $ frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)} $ but you also take $1/n$ before and it transformed into factors like that: $ frac{1}{3^{n-1}} $
              $endgroup$
              – VirtualUser
              Dec 19 '18 at 20:36












            • $begingroup$
              @VirtualUser Try writing out the first few terms of the sum $sum_{n ge 2} left(frac{1}{3^n(n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)}right)$ explicitly and it should become clear.
              $endgroup$
              – angryavian
              Dec 20 '18 at 16:45










            • $begingroup$
              You have just sorted elements by n'th term, right?
              $endgroup$
              – VirtualUser
              Dec 20 '18 at 18:20














            1












            1








            1





            $begingroup$

            Hints:



            $$n^3 - n = (n-1) n (n+1)$$



            $$frac{1}{n (n+1)} = frac{1}{n} - frac{1}{n+1}$$
            $$frac{1}{(n-1) n} = frac{1}{n-1} - frac{1}{n}$$
            $$frac{1}{(n-1)(n+1)} = frac{1/2}{n-1} - frac{1/2}{n+1}$$
            $$frac{1}{(n-1)n(n+1)} = frac{1}{(n-1)n} - frac{1}{(n-1)(n+1)} = frac{1}{n-1} - frac{1}{n} - frac{1/2}{n-1} + frac{1/2}{n+1} = frac{1/2}{n-1} - frac{1}{n} + frac{1/2}{n+1}$$



            $$frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n}
            + frac{1}{3^n (n+1)}$$



            Then try to combine terms when substituting this into the sum.




            There is probably a more elegant way to do the following computations... $$begin{align}sum_{n ge 2} frac{2}{3^n (n-1) n (n+1)} &= frac{1}{3^2} + left(frac{1}{3^3} - frac{2}{3^2}right)frac{1}{2} + sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} \ &= frac{1}{54} + left(3 - 2 + frac{1}{3}right)sum_{n ge 3} frac{1}{3^n n} \ &= frac{1}{54} + frac{4}{3} sum_{nge 3} frac{1}{3^n n} \ &= frac{1}{54} - frac{4}{3} left(frac{1}{3} + frac{1}{9 cdot 2} right) + frac{4}{3} sum_{nge 1} frac{1}{3^n n} \ &= - frac{1}{2} + frac{4}{3} sum_{nge 1} frac{1}{3^n n}. end{align}$$







            share|cite|improve this answer











            $endgroup$



            Hints:



            $$n^3 - n = (n-1) n (n+1)$$



            $$frac{1}{n (n+1)} = frac{1}{n} - frac{1}{n+1}$$
            $$frac{1}{(n-1) n} = frac{1}{n-1} - frac{1}{n}$$
            $$frac{1}{(n-1)(n+1)} = frac{1/2}{n-1} - frac{1/2}{n+1}$$
            $$frac{1}{(n-1)n(n+1)} = frac{1}{(n-1)n} - frac{1}{(n-1)(n+1)} = frac{1}{n-1} - frac{1}{n} - frac{1/2}{n-1} + frac{1/2}{n+1} = frac{1/2}{n-1} - frac{1}{n} + frac{1/2}{n+1}$$



            $$frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n}
            + frac{1}{3^n (n+1)}$$



            Then try to combine terms when substituting this into the sum.




            There is probably a more elegant way to do the following computations... $$begin{align}sum_{n ge 2} frac{2}{3^n (n-1) n (n+1)} &= frac{1}{3^2} + left(frac{1}{3^3} - frac{2}{3^2}right)frac{1}{2} + sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} \ &= frac{1}{54} + left(3 - 2 + frac{1}{3}right)sum_{n ge 3} frac{1}{3^n n} \ &= frac{1}{54} + frac{4}{3} sum_{nge 3} frac{1}{3^n n} \ &= frac{1}{54} - frac{4}{3} left(frac{1}{3} + frac{1}{9 cdot 2} right) + frac{4}{3} sum_{nge 1} frac{1}{3^n n} \ &= - frac{1}{2} + frac{4}{3} sum_{nge 1} frac{1}{3^n n}. end{align}$$








            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 19 '18 at 19:54

























            answered Dec 19 '18 at 19:46









            angryavianangryavian

            42.2k23481




            42.2k23481












            • $begingroup$
              Can you explain how you get this? $ sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} $? I know that $ frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)} $ but you also take $1/n$ before and it transformed into factors like that: $ frac{1}{3^{n-1}} $
              $endgroup$
              – VirtualUser
              Dec 19 '18 at 20:36












            • $begingroup$
              @VirtualUser Try writing out the first few terms of the sum $sum_{n ge 2} left(frac{1}{3^n(n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)}right)$ explicitly and it should become clear.
              $endgroup$
              – angryavian
              Dec 20 '18 at 16:45










            • $begingroup$
              You have just sorted elements by n'th term, right?
              $endgroup$
              – VirtualUser
              Dec 20 '18 at 18:20


















            • $begingroup$
              Can you explain how you get this? $ sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} $? I know that $ frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)} $ but you also take $1/n$ before and it transformed into factors like that: $ frac{1}{3^{n-1}} $
              $endgroup$
              – VirtualUser
              Dec 19 '18 at 20:36












            • $begingroup$
              @VirtualUser Try writing out the first few terms of the sum $sum_{n ge 2} left(frac{1}{3^n(n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)}right)$ explicitly and it should become clear.
              $endgroup$
              – angryavian
              Dec 20 '18 at 16:45










            • $begingroup$
              You have just sorted elements by n'th term, right?
              $endgroup$
              – VirtualUser
              Dec 20 '18 at 18:20
















            $begingroup$
            Can you explain how you get this? $ sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} $? I know that $ frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)} $ but you also take $1/n$ before and it transformed into factors like that: $ frac{1}{3^{n-1}} $
            $endgroup$
            – VirtualUser
            Dec 19 '18 at 20:36






            $begingroup$
            Can you explain how you get this? $ sum_{n ge 3} left(frac{1}{3^{n-1}} - frac{2}{3^{n}} + frac{1}{3^{n+1}}right) frac{1}{n} $? I know that $ frac{2}{3^n (n-1) n (n+1)} = frac{1}{3^n (n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)} $ but you also take $1/n$ before and it transformed into factors like that: $ frac{1}{3^{n-1}} $
            $endgroup$
            – VirtualUser
            Dec 19 '18 at 20:36














            $begingroup$
            @VirtualUser Try writing out the first few terms of the sum $sum_{n ge 2} left(frac{1}{3^n(n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)}right)$ explicitly and it should become clear.
            $endgroup$
            – angryavian
            Dec 20 '18 at 16:45




            $begingroup$
            @VirtualUser Try writing out the first few terms of the sum $sum_{n ge 2} left(frac{1}{3^n(n-1)} - frac{2}{3^n n} + frac{1}{3^n (n+1)}right)$ explicitly and it should become clear.
            $endgroup$
            – angryavian
            Dec 20 '18 at 16:45












            $begingroup$
            You have just sorted elements by n'th term, right?
            $endgroup$
            – VirtualUser
            Dec 20 '18 at 18:20




            $begingroup$
            You have just sorted elements by n'th term, right?
            $endgroup$
            – VirtualUser
            Dec 20 '18 at 18:20











            2












            $begingroup$

            hint



            $$frac{2}{n^3-n}=frac{-2}{n}+frac{1}{n-1}+frac{1}{n+1}$$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              hint



              $$frac{2}{n^3-n}=frac{-2}{n}+frac{1}{n-1}+frac{1}{n+1}$$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                hint



                $$frac{2}{n^3-n}=frac{-2}{n}+frac{1}{n-1}+frac{1}{n+1}$$






                share|cite|improve this answer









                $endgroup$



                hint



                $$frac{2}{n^3-n}=frac{-2}{n}+frac{1}{n-1}+frac{1}{n+1}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 19 '18 at 19:40









                hamam_Abdallahhamam_Abdallah

                38.2k21634




                38.2k21634






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046791%2fproof-that-sum-n-2-infty-frac23n-cdot-n3-n-frac-12-f%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten