Do we have $|F|_{TV([a,b])}=lim_{epsilonto 0+}|F|_{TV([a+epsilon,b])}$ if $F:[a,b]tomathbb{R}$ is continuous?












2












$begingroup$



Given any interval ${[a,b]}$, define the total variation ${|F|_{TV([a,b])}}$ of ${F}$ on ${[a,b]}$ as
$$
displaystyle |F|_{TV([a,b])} := sup_{a leq x_0 < ldots < x_n leq b} sum_{i=1}^n |F(x_i) - F(x_{i+1})|.
$$
Let $F:[a,b]tomathbb{R}$ be a continuous function.



Can one conclude that $$|F|_{TV([a,b])}=lim_{epsilonto 0+}|F|_{TV([a+epsilon,b])}?$$






If $F$ is absolutely continuous than this can by done by noting that
$$
|F|_{TV([c,d])}=int_c^d|F'(x)| dx.
$$
What can one say in the general case?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Have you tried exploring the canonical examples with infinite total variation?
    $endgroup$
    – Alex R.
    Jan 4 '17 at 0:10










  • $begingroup$
    @AlexR. In that case, I assume that one also has $lim_{epsilonto0+}|F|_{TV([a+epsilon,b])}=infty$ and thus the equality is also true?
    $endgroup$
    – Jack
    Jan 4 '17 at 0:13


















2












$begingroup$



Given any interval ${[a,b]}$, define the total variation ${|F|_{TV([a,b])}}$ of ${F}$ on ${[a,b]}$ as
$$
displaystyle |F|_{TV([a,b])} := sup_{a leq x_0 < ldots < x_n leq b} sum_{i=1}^n |F(x_i) - F(x_{i+1})|.
$$
Let $F:[a,b]tomathbb{R}$ be a continuous function.



Can one conclude that $$|F|_{TV([a,b])}=lim_{epsilonto 0+}|F|_{TV([a+epsilon,b])}?$$






If $F$ is absolutely continuous than this can by done by noting that
$$
|F|_{TV([c,d])}=int_c^d|F'(x)| dx.
$$
What can one say in the general case?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Have you tried exploring the canonical examples with infinite total variation?
    $endgroup$
    – Alex R.
    Jan 4 '17 at 0:10










  • $begingroup$
    @AlexR. In that case, I assume that one also has $lim_{epsilonto0+}|F|_{TV([a+epsilon,b])}=infty$ and thus the equality is also true?
    $endgroup$
    – Jack
    Jan 4 '17 at 0:13
















2












2








2





$begingroup$



Given any interval ${[a,b]}$, define the total variation ${|F|_{TV([a,b])}}$ of ${F}$ on ${[a,b]}$ as
$$
displaystyle |F|_{TV([a,b])} := sup_{a leq x_0 < ldots < x_n leq b} sum_{i=1}^n |F(x_i) - F(x_{i+1})|.
$$
Let $F:[a,b]tomathbb{R}$ be a continuous function.



Can one conclude that $$|F|_{TV([a,b])}=lim_{epsilonto 0+}|F|_{TV([a+epsilon,b])}?$$






If $F$ is absolutely continuous than this can by done by noting that
$$
|F|_{TV([c,d])}=int_c^d|F'(x)| dx.
$$
What can one say in the general case?










share|cite|improve this question









$endgroup$





Given any interval ${[a,b]}$, define the total variation ${|F|_{TV([a,b])}}$ of ${F}$ on ${[a,b]}$ as
$$
displaystyle |F|_{TV([a,b])} := sup_{a leq x_0 < ldots < x_n leq b} sum_{i=1}^n |F(x_i) - F(x_{i+1})|.
$$
Let $F:[a,b]tomathbb{R}$ be a continuous function.



Can one conclude that $$|F|_{TV([a,b])}=lim_{epsilonto 0+}|F|_{TV([a+epsilon,b])}?$$






If $F$ is absolutely continuous than this can by done by noting that
$$
|F|_{TV([c,d])}=int_c^d|F'(x)| dx.
$$
What can one say in the general case?







real-analysis bounded-variation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 3 '17 at 23:56









JackJack

27.6k1782203




27.6k1782203












  • $begingroup$
    Have you tried exploring the canonical examples with infinite total variation?
    $endgroup$
    – Alex R.
    Jan 4 '17 at 0:10










  • $begingroup$
    @AlexR. In that case, I assume that one also has $lim_{epsilonto0+}|F|_{TV([a+epsilon,b])}=infty$ and thus the equality is also true?
    $endgroup$
    – Jack
    Jan 4 '17 at 0:13




















  • $begingroup$
    Have you tried exploring the canonical examples with infinite total variation?
    $endgroup$
    – Alex R.
    Jan 4 '17 at 0:10










  • $begingroup$
    @AlexR. In that case, I assume that one also has $lim_{epsilonto0+}|F|_{TV([a+epsilon,b])}=infty$ and thus the equality is also true?
    $endgroup$
    – Jack
    Jan 4 '17 at 0:13


















$begingroup$
Have you tried exploring the canonical examples with infinite total variation?
$endgroup$
– Alex R.
Jan 4 '17 at 0:10




$begingroup$
Have you tried exploring the canonical examples with infinite total variation?
$endgroup$
– Alex R.
Jan 4 '17 at 0:10












$begingroup$
@AlexR. In that case, I assume that one also has $lim_{epsilonto0+}|F|_{TV([a+epsilon,b])}=infty$ and thus the equality is also true?
$endgroup$
– Jack
Jan 4 '17 at 0:13






$begingroup$
@AlexR. In that case, I assume that one also has $lim_{epsilonto0+}|F|_{TV([a+epsilon,b])}=infty$ and thus the equality is also true?
$endgroup$
– Jack
Jan 4 '17 at 0:13












1 Answer
1






active

oldest

votes


















3












$begingroup$

I decided to make my comment an answer since it appears to be long.



Observe that $leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$ since if $P$ is a partition of $[a+epsilon,b]$



then



$$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvert leleftlvert F(a+epsilon)-F(a)rightrvert+sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



Taking a supremum over partitions gives the described result. Thus, taking a limit in $epsilon$ we obtain



$$limsup_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



Observe that through a similar proof we may obtain:



$$leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{1},b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{2},b])}$$



when $epsilon_{1}>epsilon_{2}$. Now take a partition $P=left{a=x_{0}<ldots<x_{n}=bright}$. By continuity of $F$ at $x=a$ we can find $delta>0$ so that $leftlvert F(x)-F(a)rightrvert<eta$ if $leftlvert x-arightrvert<delta$. By perhaps refining our partition and increasing the variation we may assume $leftlvert x_{1}-arightrvert<delta$. So:



$$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleeta+leftlvertleftlvert Frightrvertrightrvert_{TV([x_{1},b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leliminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



Note that if you remove continuity of the function at $a$ then the limit is not true. For example, consider $f:[0,1]tomathbb{R}$ defined by $f(x)=chi_{left{0right}}(x)$. Then $leftlvertleftlvert frightrvertrightrvert_{TV([epsilon,1])}=0$ for $epsilon>0$ but $leftlvertleftlvert frightrvertrightvert_{TV([0,1])}=1$.






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2082709%2fdo-we-have-f-tva-b-lim-epsilon-to-0-f-tva-epsilon-b-i%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    I decided to make my comment an answer since it appears to be long.



    Observe that $leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$ since if $P$ is a partition of $[a+epsilon,b]$



    then



    $$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvert leleftlvert F(a+epsilon)-F(a)rightrvert+sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



    Taking a supremum over partitions gives the described result. Thus, taking a limit in $epsilon$ we obtain



    $$limsup_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



    Observe that through a similar proof we may obtain:



    $$leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{1},b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{2},b])}$$



    when $epsilon_{1}>epsilon_{2}$. Now take a partition $P=left{a=x_{0}<ldots<x_{n}=bright}$. By continuity of $F$ at $x=a$ we can find $delta>0$ so that $leftlvert F(x)-F(a)rightrvert<eta$ if $leftlvert x-arightrvert<delta$. By perhaps refining our partition and increasing the variation we may assume $leftlvert x_{1}-arightrvert<delta$. So:



    $$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleeta+leftlvertleftlvert Frightrvertrightrvert_{TV([x_{1},b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



    So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



    So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leliminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



    Note that if you remove continuity of the function at $a$ then the limit is not true. For example, consider $f:[0,1]tomathbb{R}$ defined by $f(x)=chi_{left{0right}}(x)$. Then $leftlvertleftlvert frightrvertrightrvert_{TV([epsilon,1])}=0$ for $epsilon>0$ but $leftlvertleftlvert frightrvertrightvert_{TV([0,1])}=1$.






    share|cite|improve this answer











    $endgroup$


















      3












      $begingroup$

      I decided to make my comment an answer since it appears to be long.



      Observe that $leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$ since if $P$ is a partition of $[a+epsilon,b]$



      then



      $$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvert leleftlvert F(a+epsilon)-F(a)rightrvert+sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



      Taking a supremum over partitions gives the described result. Thus, taking a limit in $epsilon$ we obtain



      $$limsup_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



      Observe that through a similar proof we may obtain:



      $$leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{1},b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{2},b])}$$



      when $epsilon_{1}>epsilon_{2}$. Now take a partition $P=left{a=x_{0}<ldots<x_{n}=bright}$. By continuity of $F$ at $x=a$ we can find $delta>0$ so that $leftlvert F(x)-F(a)rightrvert<eta$ if $leftlvert x-arightrvert<delta$. By perhaps refining our partition and increasing the variation we may assume $leftlvert x_{1}-arightrvert<delta$. So:



      $$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleeta+leftlvertleftlvert Frightrvertrightrvert_{TV([x_{1},b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



      So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



      So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leliminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



      Note that if you remove continuity of the function at $a$ then the limit is not true. For example, consider $f:[0,1]tomathbb{R}$ defined by $f(x)=chi_{left{0right}}(x)$. Then $leftlvertleftlvert frightrvertrightrvert_{TV([epsilon,1])}=0$ for $epsilon>0$ but $leftlvertleftlvert frightrvertrightvert_{TV([0,1])}=1$.






      share|cite|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        I decided to make my comment an answer since it appears to be long.



        Observe that $leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$ since if $P$ is a partition of $[a+epsilon,b]$



        then



        $$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvert leleftlvert F(a+epsilon)-F(a)rightrvert+sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



        Taking a supremum over partitions gives the described result. Thus, taking a limit in $epsilon$ we obtain



        $$limsup_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



        Observe that through a similar proof we may obtain:



        $$leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{1},b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{2},b])}$$



        when $epsilon_{1}>epsilon_{2}$. Now take a partition $P=left{a=x_{0}<ldots<x_{n}=bright}$. By continuity of $F$ at $x=a$ we can find $delta>0$ so that $leftlvert F(x)-F(a)rightrvert<eta$ if $leftlvert x-arightrvert<delta$. By perhaps refining our partition and increasing the variation we may assume $leftlvert x_{1}-arightrvert<delta$. So:



        $$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleeta+leftlvertleftlvert Frightrvertrightrvert_{TV([x_{1},b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



        So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



        So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leliminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



        Note that if you remove continuity of the function at $a$ then the limit is not true. For example, consider $f:[0,1]tomathbb{R}$ defined by $f(x)=chi_{left{0right}}(x)$. Then $leftlvertleftlvert frightrvertrightrvert_{TV([epsilon,1])}=0$ for $epsilon>0$ but $leftlvertleftlvert frightrvertrightvert_{TV([0,1])}=1$.






        share|cite|improve this answer











        $endgroup$



        I decided to make my comment an answer since it appears to be long.



        Observe that $leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$ since if $P$ is a partition of $[a+epsilon,b]$



        then



        $$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvert leleftlvert F(a+epsilon)-F(a)rightrvert+sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



        Taking a supremum over partitions gives the described result. Thus, taking a limit in $epsilon$ we obtain



        $$limsup_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}$$



        Observe that through a similar proof we may obtain:



        $$leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{1},b])}leleftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon_{2},b])}$$



        when $epsilon_{1}>epsilon_{2}$. Now take a partition $P=left{a=x_{0}<ldots<x_{n}=bright}$. By continuity of $F$ at $x=a$ we can find $delta>0$ so that $leftlvert F(x)-F(a)rightrvert<eta$ if $leftlvert x-arightrvert<delta$. By perhaps refining our partition and increasing the variation we may assume $leftlvert x_{1}-arightrvert<delta$. So:



        $$sum_{i=1}^{n}leftlvert F(x_{i})-F(x_{i-1})rightrvertleeta+leftlvertleftlvert Frightrvertrightrvert_{TV([x_{1},b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



        So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leeta+liminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



        So $$leftlvertleftlvert Frightrvertrightrvert_{TV([a,b])}leliminf_{epsilonto0^{+}}leftlvertleftlvert Frightrvertrightrvert_{TV([a+epsilon,b])}$$



        Note that if you remove continuity of the function at $a$ then the limit is not true. For example, consider $f:[0,1]tomathbb{R}$ defined by $f(x)=chi_{left{0right}}(x)$. Then $leftlvertleftlvert frightrvertrightrvert_{TV([epsilon,1])}=0$ for $epsilon>0$ but $leftlvertleftlvert frightrvertrightvert_{TV([0,1])}=1$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 22 '18 at 16:50


























        community wiki





        5 revs, 2 users 94%
        user71352































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2082709%2fdo-we-have-f-tva-b-lim-epsilon-to-0-f-tva-epsilon-b-i%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten