$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$












1












$begingroup$


This comes from Chapter 0, Proposition 0.20, Real Analysis, by Folland




$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$




I am confused about the proof:




Let $A = bigcup_1^infty A_n$ where $A_n = {x:f(x)>1/n}$. If A is uncountable, then some $A_n$ must be uncountable, and $sum_{xin F} f(x) > mbox{card}(F)/n$ for $F$ a finite subset of $A_n$; it follows that $sum_{xin X}f(x) = infty$.




My questions are:




  1. How to get "$sum_{xin F} f(x) > mbox{card}(F)/n$"?

  2. How to get "$sum_{xin X}f(x) = infty$" based on previous result?


Note that $$sum_{xin X}f(x) = sup left{sum_{xin F}f(x): Fsubset X, F text{ finite } right}$$



Could anyone please provide me with detailed steps? Thanks!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    @Masacroso It should be $sum_{xin X}$ from Folland.
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 10:59










  • $begingroup$
    @Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 11:00
















1












$begingroup$


This comes from Chapter 0, Proposition 0.20, Real Analysis, by Folland




$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$




I am confused about the proof:




Let $A = bigcup_1^infty A_n$ where $A_n = {x:f(x)>1/n}$. If A is uncountable, then some $A_n$ must be uncountable, and $sum_{xin F} f(x) > mbox{card}(F)/n$ for $F$ a finite subset of $A_n$; it follows that $sum_{xin X}f(x) = infty$.




My questions are:




  1. How to get "$sum_{xin F} f(x) > mbox{card}(F)/n$"?

  2. How to get "$sum_{xin X}f(x) = infty$" based on previous result?


Note that $$sum_{xin X}f(x) = sup left{sum_{xin F}f(x): Fsubset X, F text{ finite } right}$$



Could anyone please provide me with detailed steps? Thanks!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    @Masacroso It should be $sum_{xin X}$ from Folland.
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 10:59










  • $begingroup$
    @Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 11:00














1












1








1





$begingroup$


This comes from Chapter 0, Proposition 0.20, Real Analysis, by Folland




$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$




I am confused about the proof:




Let $A = bigcup_1^infty A_n$ where $A_n = {x:f(x)>1/n}$. If A is uncountable, then some $A_n$ must be uncountable, and $sum_{xin F} f(x) > mbox{card}(F)/n$ for $F$ a finite subset of $A_n$; it follows that $sum_{xin X}f(x) = infty$.




My questions are:




  1. How to get "$sum_{xin F} f(x) > mbox{card}(F)/n$"?

  2. How to get "$sum_{xin X}f(x) = infty$" based on previous result?


Note that $$sum_{xin X}f(x) = sup left{sum_{xin F}f(x): Fsubset X, F text{ finite } right}$$



Could anyone please provide me with detailed steps? Thanks!










share|cite|improve this question











$endgroup$




This comes from Chapter 0, Proposition 0.20, Real Analysis, by Folland




$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$




I am confused about the proof:




Let $A = bigcup_1^infty A_n$ where $A_n = {x:f(x)>1/n}$. If A is uncountable, then some $A_n$ must be uncountable, and $sum_{xin F} f(x) > mbox{card}(F)/n$ for $F$ a finite subset of $A_n$; it follows that $sum_{xin X}f(x) = infty$.




My questions are:




  1. How to get "$sum_{xin F} f(x) > mbox{card}(F)/n$"?

  2. How to get "$sum_{xin X}f(x) = infty$" based on previous result?


Note that $$sum_{xin X}f(x) = sup left{sum_{xin F}f(x): Fsubset X, F text{ finite } right}$$



Could anyone please provide me with detailed steps? Thanks!







real-analysis functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 30 '18 at 10:56









Masacroso

13.2k41749




13.2k41749










asked Dec 30 '18 at 10:39









sleeve chensleeve chen

3,23942256




3,23942256








  • 1




    $begingroup$
    @Masacroso It should be $sum_{xin X}$ from Folland.
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 10:59










  • $begingroup$
    @Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 11:00














  • 1




    $begingroup$
    @Masacroso It should be $sum_{xin X}$ from Folland.
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 10:59










  • $begingroup$
    @Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 11:00








1




1




$begingroup$
@Masacroso It should be $sum_{xin X}$ from Folland.
$endgroup$
– sleeve chen
Dec 30 '18 at 10:59




$begingroup$
@Masacroso It should be $sum_{xin X}$ from Folland.
$endgroup$
– sleeve chen
Dec 30 '18 at 10:59












$begingroup$
@Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
$endgroup$
– sleeve chen
Dec 30 '18 at 11:00




$begingroup$
@Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
$endgroup$
– sleeve chen
Dec 30 '18 at 11:00










3 Answers
3






active

oldest

votes


















2












$begingroup$

If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
$$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$



If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
and then
$$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
which can be arbitrarily large.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 10:51












  • $begingroup$
    As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
    $endgroup$
    – Lord Shark the Unknown
    Dec 30 '18 at 10:55










  • $begingroup$
    I get it, thanks!
    $endgroup$
    – sleeve chen
    Dec 30 '18 at 10:57



















2












$begingroup$

Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
$$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$

which is arbitrary large. We may conclude that
$$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056710%2ffx-rightarrow-0-infty-a-xfx0-if-a-uncountable-sum-x-i%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
      $$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$



      If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
      and then
      $$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
      which can be arbitrarily large.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
        $endgroup$
        – sleeve chen
        Dec 30 '18 at 10:51












      • $begingroup$
        As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
        $endgroup$
        – Lord Shark the Unknown
        Dec 30 '18 at 10:55










      • $begingroup$
        I get it, thanks!
        $endgroup$
        – sleeve chen
        Dec 30 '18 at 10:57
















      2












      $begingroup$

      If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
      $$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$



      If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
      and then
      $$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
      which can be arbitrarily large.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
        $endgroup$
        – sleeve chen
        Dec 30 '18 at 10:51












      • $begingroup$
        As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
        $endgroup$
        – Lord Shark the Unknown
        Dec 30 '18 at 10:55










      • $begingroup$
        I get it, thanks!
        $endgroup$
        – sleeve chen
        Dec 30 '18 at 10:57














      2












      2








      2





      $begingroup$

      If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
      $$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$



      If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
      and then
      $$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
      which can be arbitrarily large.






      share|cite|improve this answer









      $endgroup$



      If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
      $$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$



      If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
      and then
      $$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
      which can be arbitrarily large.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Dec 30 '18 at 10:42









      Lord Shark the UnknownLord Shark the Unknown

      109k1163136




      109k1163136












      • $begingroup$
        I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
        $endgroup$
        – sleeve chen
        Dec 30 '18 at 10:51












      • $begingroup$
        As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
        $endgroup$
        – Lord Shark the Unknown
        Dec 30 '18 at 10:55










      • $begingroup$
        I get it, thanks!
        $endgroup$
        – sleeve chen
        Dec 30 '18 at 10:57


















      • $begingroup$
        I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
        $endgroup$
        – sleeve chen
        Dec 30 '18 at 10:51












      • $begingroup$
        As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
        $endgroup$
        – Lord Shark the Unknown
        Dec 30 '18 at 10:55










      • $begingroup$
        I get it, thanks!
        $endgroup$
        – sleeve chen
        Dec 30 '18 at 10:57
















      $begingroup$
      I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
      $endgroup$
      – sleeve chen
      Dec 30 '18 at 10:51






      $begingroup$
      I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
      $endgroup$
      – sleeve chen
      Dec 30 '18 at 10:51














      $begingroup$
      As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
      $endgroup$
      – Lord Shark the Unknown
      Dec 30 '18 at 10:55




      $begingroup$
      As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
      $endgroup$
      – Lord Shark the Unknown
      Dec 30 '18 at 10:55












      $begingroup$
      I get it, thanks!
      $endgroup$
      – sleeve chen
      Dec 30 '18 at 10:57




      $begingroup$
      I get it, thanks!
      $endgroup$
      – sleeve chen
      Dec 30 '18 at 10:57











      2












      $begingroup$

      Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
      Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
      $$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
      sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$

      which is arbitrary large. We may conclude that
      $$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
        Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
        $$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
        sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$

        which is arbitrary large. We may conclude that
        $$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
          Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
          $$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
          sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$

          which is arbitrary large. We may conclude that
          $$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$






          share|cite|improve this answer











          $endgroup$



          Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
          Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
          $$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
          sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$

          which is arbitrary large. We may conclude that
          $$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 30 '18 at 10:53

























          answered Dec 30 '18 at 10:42









          Robert ZRobert Z

          102k1072145




          102k1072145























              1












              $begingroup$

              Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.






                  share|cite|improve this answer









                  $endgroup$



                  Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 30 '18 at 10:42









                  WuestenfuxWuestenfux

                  5,5911513




                  5,5911513






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056710%2ffx-rightarrow-0-infty-a-xfx0-if-a-uncountable-sum-x-i%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten