$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$
$begingroup$
This comes from Chapter 0, Proposition 0.20
, Real Analysis, by Folland
$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$
I am confused about the proof:
Let $A = bigcup_1^infty A_n$ where $A_n = {x:f(x)>1/n}$. If A is uncountable, then some $A_n$ must be uncountable, and $sum_{xin F} f(x) > mbox{card}(F)/n$ for $F$ a finite subset of $A_n$; it follows that $sum_{xin X}f(x) = infty$.
My questions are:
- How to get "$sum_{xin F} f(x) > mbox{card}(F)/n$"?
- How to get "$sum_{xin X}f(x) = infty$" based on previous result?
Note that $$sum_{xin X}f(x) = sup left{sum_{xin F}f(x): Fsubset X, F text{ finite } right}$$
Could anyone please provide me with detailed steps? Thanks!
real-analysis functions
$endgroup$
add a comment |
$begingroup$
This comes from Chapter 0, Proposition 0.20
, Real Analysis, by Folland
$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$
I am confused about the proof:
Let $A = bigcup_1^infty A_n$ where $A_n = {x:f(x)>1/n}$. If A is uncountable, then some $A_n$ must be uncountable, and $sum_{xin F} f(x) > mbox{card}(F)/n$ for $F$ a finite subset of $A_n$; it follows that $sum_{xin X}f(x) = infty$.
My questions are:
- How to get "$sum_{xin F} f(x) > mbox{card}(F)/n$"?
- How to get "$sum_{xin X}f(x) = infty$" based on previous result?
Note that $$sum_{xin X}f(x) = sup left{sum_{xin F}f(x): Fsubset X, F text{ finite } right}$$
Could anyone please provide me with detailed steps? Thanks!
real-analysis functions
$endgroup$
1
$begingroup$
@Masacroso It should be $sum_{xin X}$ from Folland.
$endgroup$
– sleeve chen
Dec 30 '18 at 10:59
$begingroup$
@Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
$endgroup$
– sleeve chen
Dec 30 '18 at 11:00
add a comment |
$begingroup$
This comes from Chapter 0, Proposition 0.20
, Real Analysis, by Folland
$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$
I am confused about the proof:
Let $A = bigcup_1^infty A_n$ where $A_n = {x:f(x)>1/n}$. If A is uncountable, then some $A_n$ must be uncountable, and $sum_{xin F} f(x) > mbox{card}(F)/n$ for $F$ a finite subset of $A_n$; it follows that $sum_{xin X}f(x) = infty$.
My questions are:
- How to get "$sum_{xin F} f(x) > mbox{card}(F)/n$"?
- How to get "$sum_{xin X}f(x) = infty$" based on previous result?
Note that $$sum_{xin X}f(x) = sup left{sum_{xin F}f(x): Fsubset X, F text{ finite } right}$$
Could anyone please provide me with detailed steps? Thanks!
real-analysis functions
$endgroup$
This comes from Chapter 0, Proposition 0.20
, Real Analysis, by Folland
$f:X rightarrow [0,infty]$, $A = {x:f(x)>0}$. If $A$ uncountable, $sum_{xin X}f(x) = infty$
I am confused about the proof:
Let $A = bigcup_1^infty A_n$ where $A_n = {x:f(x)>1/n}$. If A is uncountable, then some $A_n$ must be uncountable, and $sum_{xin F} f(x) > mbox{card}(F)/n$ for $F$ a finite subset of $A_n$; it follows that $sum_{xin X}f(x) = infty$.
My questions are:
- How to get "$sum_{xin F} f(x) > mbox{card}(F)/n$"?
- How to get "$sum_{xin X}f(x) = infty$" based on previous result?
Note that $$sum_{xin X}f(x) = sup left{sum_{xin F}f(x): Fsubset X, F text{ finite } right}$$
Could anyone please provide me with detailed steps? Thanks!
real-analysis functions
real-analysis functions
edited Dec 30 '18 at 10:56
Masacroso
13.2k41749
13.2k41749
asked Dec 30 '18 at 10:39
sleeve chensleeve chen
3,23942256
3,23942256
1
$begingroup$
@Masacroso It should be $sum_{xin X}$ from Folland.
$endgroup$
– sleeve chen
Dec 30 '18 at 10:59
$begingroup$
@Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
$endgroup$
– sleeve chen
Dec 30 '18 at 11:00
add a comment |
1
$begingroup$
@Masacroso It should be $sum_{xin X}$ from Folland.
$endgroup$
– sleeve chen
Dec 30 '18 at 10:59
$begingroup$
@Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
$endgroup$
– sleeve chen
Dec 30 '18 at 11:00
1
1
$begingroup$
@Masacroso It should be $sum_{xin X}$ from Folland.
$endgroup$
– sleeve chen
Dec 30 '18 at 10:59
$begingroup$
@Masacroso It should be $sum_{xin X}$ from Folland.
$endgroup$
– sleeve chen
Dec 30 '18 at 10:59
$begingroup$
@Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
$endgroup$
– sleeve chen
Dec 30 '18 at 11:00
$begingroup$
@Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
$endgroup$
– sleeve chen
Dec 30 '18 at 11:00
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
$$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$
If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
and then
$$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
which can be arbitrarily large.
$endgroup$
$begingroup$
I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
$endgroup$
– sleeve chen
Dec 30 '18 at 10:51
$begingroup$
As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
$endgroup$
– Lord Shark the Unknown
Dec 30 '18 at 10:55
$begingroup$
I get it, thanks!
$endgroup$
– sleeve chen
Dec 30 '18 at 10:57
add a comment |
$begingroup$
Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
$$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$
which is arbitrary large. We may conclude that
$$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$
$endgroup$
add a comment |
$begingroup$
Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056710%2ffx-rightarrow-0-infty-a-xfx0-if-a-uncountable-sum-x-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
$$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$
If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
and then
$$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
which can be arbitrarily large.
$endgroup$
$begingroup$
I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
$endgroup$
– sleeve chen
Dec 30 '18 at 10:51
$begingroup$
As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
$endgroup$
– Lord Shark the Unknown
Dec 30 '18 at 10:55
$begingroup$
I get it, thanks!
$endgroup$
– sleeve chen
Dec 30 '18 at 10:57
add a comment |
$begingroup$
If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
$$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$
If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
and then
$$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
which can be arbitrarily large.
$endgroup$
$begingroup$
I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
$endgroup$
– sleeve chen
Dec 30 '18 at 10:51
$begingroup$
As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
$endgroup$
– Lord Shark the Unknown
Dec 30 '18 at 10:55
$begingroup$
I get it, thanks!
$endgroup$
– sleeve chen
Dec 30 '18 at 10:57
add a comment |
$begingroup$
If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
$$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$
If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
and then
$$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
which can be arbitrarily large.
$endgroup$
If $xin F$, then $xin A_n$, and $f(x)>1/n$. Let $|F|=m$, and write $F={x_1,ldots,x_m}$. Then
$$sum_{xin F}f(x)=f(x_1)+cdots+f(x_n)ge 1/n+cdots +1/n=m/n.$$
If $|A_n|=infty$, then $A_n$ has arbitrarily large finite subsets $F$,
and then
$$sum_{xin A_n}f(x)ge sum_{xin F}f(x)gefrac{|F|}{n}$$
which can be arbitrarily large.
answered Dec 30 '18 at 10:42
Lord Shark the UnknownLord Shark the Unknown
109k1163136
109k1163136
$begingroup$
I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
$endgroup$
– sleeve chen
Dec 30 '18 at 10:51
$begingroup$
As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
$endgroup$
– Lord Shark the Unknown
Dec 30 '18 at 10:55
$begingroup$
I get it, thanks!
$endgroup$
– sleeve chen
Dec 30 '18 at 10:57
add a comment |
$begingroup$
I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
$endgroup$
– sleeve chen
Dec 30 '18 at 10:51
$begingroup$
As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
$endgroup$
– Lord Shark the Unknown
Dec 30 '18 at 10:55
$begingroup$
I get it, thanks!
$endgroup$
– sleeve chen
Dec 30 '18 at 10:57
$begingroup$
I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
$endgroup$
– sleeve chen
Dec 30 '18 at 10:51
$begingroup$
I am still a bit confused on "if $xin F$ then $xin A_n$". How to claim this? I still miss something..
$endgroup$
– sleeve chen
Dec 30 '18 at 10:51
$begingroup$
As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
$endgroup$
– Lord Shark the Unknown
Dec 30 '18 at 10:55
$begingroup$
As you wrote, "...for $F$ a finite subset of $A_n$...." @sleevechen
$endgroup$
– Lord Shark the Unknown
Dec 30 '18 at 10:55
$begingroup$
I get it, thanks!
$endgroup$
– sleeve chen
Dec 30 '18 at 10:57
$begingroup$
I get it, thanks!
$endgroup$
– sleeve chen
Dec 30 '18 at 10:57
add a comment |
$begingroup$
Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
$$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$
which is arbitrary large. We may conclude that
$$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$
$endgroup$
add a comment |
$begingroup$
Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
$$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$
which is arbitrary large. We may conclude that
$$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$
$endgroup$
add a comment |
$begingroup$
Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
$$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$
which is arbitrary large. We may conclude that
$$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$
$endgroup$
Since $A = bigcup_1^infty A_n$ is uncountable, then there is some positive integer $n$ such that $A_n$ is infinite.
Hence for any positive integer $m$ there is a finite set $F_msubset A_n$ such that $mbox{card}(F_m)>m$, and it follows
$$sum_{xin A_n} f(x)geq sum_{xin F_m} f(x) >
sum_{xin F_m} frac{1}{n}=frac{mbox{card}(F_m)}{n}>frac{m}{n}$$
which is arbitrary large. We may conclude that
$$sum_{xin A} f(x)geq sum_{xin A_n} f(x)=+infty.$$
edited Dec 30 '18 at 10:53
answered Dec 30 '18 at 10:42
Robert ZRobert Z
102k1072145
102k1072145
add a comment |
add a comment |
$begingroup$
Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.
$endgroup$
add a comment |
$begingroup$
Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.
$endgroup$
add a comment |
$begingroup$
Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.
$endgroup$
Well, the first part is clear: $sum_{xin F}f(x)>sum_{xin F} frac{1}{n} = |F|/n$.
answered Dec 30 '18 at 10:42
WuestenfuxWuestenfux
5,5911513
5,5911513
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056710%2ffx-rightarrow-0-infty-a-xfx0-if-a-uncountable-sum-x-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
@Masacroso It should be $sum_{xin X}$ from Folland.
$endgroup$
– sleeve chen
Dec 30 '18 at 10:59
$begingroup$
@Masacroso $X$ should be the domain of the function. $X$ is an arbitrary set.
$endgroup$
– sleeve chen
Dec 30 '18 at 11:00