Given $left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1$, prove $left(x + sqrt{1+x^2}right)left(y +...












2












$begingroup$



Let $x$ and $y$ be real numbers such that
$$left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1$$
Prove that
$$left(x + sqrt{1+x^2}right)left(y + sqrt{1+y^2}right) = 1$$











share|cite|improve this question











$endgroup$



closed as off-topic by Eevee Trainer, metamorphy, Abcd, Paul Frost, José Carlos Santos Dec 30 '18 at 15:50


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, metamorphy, Abcd, Paul Frost, José Carlos Santos

If this question can be reworded to fit the rules in the help center, please edit the question.
















  • $begingroup$
    Welcome to Math.SE! You'll find that the community tends to respond more favorably to questions that include some sense of what you know about a problem, and/or where you got stuck. Such information helps answerers target their responses to your skill level, without wasting anyone's time telling you things you already know. (Plus, it helps convince people that you aren't simply trying to get them to do your homework for you.)
    $endgroup$
    – Blue
    Dec 30 '18 at 11:37


















2












$begingroup$



Let $x$ and $y$ be real numbers such that
$$left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1$$
Prove that
$$left(x + sqrt{1+x^2}right)left(y + sqrt{1+y^2}right) = 1$$











share|cite|improve this question











$endgroup$



closed as off-topic by Eevee Trainer, metamorphy, Abcd, Paul Frost, José Carlos Santos Dec 30 '18 at 15:50


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, metamorphy, Abcd, Paul Frost, José Carlos Santos

If this question can be reworded to fit the rules in the help center, please edit the question.
















  • $begingroup$
    Welcome to Math.SE! You'll find that the community tends to respond more favorably to questions that include some sense of what you know about a problem, and/or where you got stuck. Such information helps answerers target their responses to your skill level, without wasting anyone's time telling you things you already know. (Plus, it helps convince people that you aren't simply trying to get them to do your homework for you.)
    $endgroup$
    – Blue
    Dec 30 '18 at 11:37
















2












2








2





$begingroup$



Let $x$ and $y$ be real numbers such that
$$left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1$$
Prove that
$$left(x + sqrt{1+x^2}right)left(y + sqrt{1+y^2}right) = 1$$











share|cite|improve this question











$endgroup$





Let $x$ and $y$ be real numbers such that
$$left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1$$
Prove that
$$left(x + sqrt{1+x^2}right)left(y + sqrt{1+y^2}right) = 1$$








algebra-precalculus trigonometry contest-math radicals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 30 '18 at 11:32









Michael Rozenberg

111k1897201




111k1897201










asked Dec 30 '18 at 10:17









SuccessSuccess

393




393




closed as off-topic by Eevee Trainer, metamorphy, Abcd, Paul Frost, José Carlos Santos Dec 30 '18 at 15:50


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, metamorphy, Abcd, Paul Frost, José Carlos Santos

If this question can be reworded to fit the rules in the help center, please edit the question.







closed as off-topic by Eevee Trainer, metamorphy, Abcd, Paul Frost, José Carlos Santos Dec 30 '18 at 15:50


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, metamorphy, Abcd, Paul Frost, José Carlos Santos

If this question can be reworded to fit the rules in the help center, please edit the question.












  • $begingroup$
    Welcome to Math.SE! You'll find that the community tends to respond more favorably to questions that include some sense of what you know about a problem, and/or where you got stuck. Such information helps answerers target their responses to your skill level, without wasting anyone's time telling you things you already know. (Plus, it helps convince people that you aren't simply trying to get them to do your homework for you.)
    $endgroup$
    – Blue
    Dec 30 '18 at 11:37




















  • $begingroup$
    Welcome to Math.SE! You'll find that the community tends to respond more favorably to questions that include some sense of what you know about a problem, and/or where you got stuck. Such information helps answerers target their responses to your skill level, without wasting anyone's time telling you things you already know. (Plus, it helps convince people that you aren't simply trying to get them to do your homework for you.)
    $endgroup$
    – Blue
    Dec 30 '18 at 11:37


















$begingroup$
Welcome to Math.SE! You'll find that the community tends to respond more favorably to questions that include some sense of what you know about a problem, and/or where you got stuck. Such information helps answerers target their responses to your skill level, without wasting anyone's time telling you things you already know. (Plus, it helps convince people that you aren't simply trying to get them to do your homework for you.)
$endgroup$
– Blue
Dec 30 '18 at 11:37






$begingroup$
Welcome to Math.SE! You'll find that the community tends to respond more favorably to questions that include some sense of what you know about a problem, and/or where you got stuck. Such information helps answerers target their responses to your skill level, without wasting anyone's time telling you things you already know. (Plus, it helps convince people that you aren't simply trying to get them to do your homework for you.)
$endgroup$
– Blue
Dec 30 '18 at 11:37












4 Answers
4






active

oldest

votes


















1












$begingroup$

We'll replace $y$ an $-y$.



Thus, the given it's $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=1$$ and we need to prove that:
$$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=1.$$
Now, the condition gives
$$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)$$ or
$$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)-left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)+$$
$$+left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)-left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=0.$$ or
$$(x-y)left(sqrt{y^2+1}+xright)-left(sqrt{x^2+1}-xright)left(sqrt{x^2+1}-sqrt{y^2+1}right)=0$$ or
$$(x-y)left(sqrt{y^2+1}+x-frac{(x+y)left(sqrt{x^2+1}-xright)}{sqrt{x^2+1}+sqrt{y^2+1}}right)=0,$$ which gives $x=y$ because the second factor it's
$$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)+(x+y)^2+1>0.$$
Id est, $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=1$$ and we are done!






share|cite|improve this answer











$endgroup$





















    2












    $begingroup$

    Hint :



    By the hypothesis of the problem, do some algebra and show that :



    $$left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1 Leftrightarrow dots Leftrightarrow y = -x$$



    Now, substitute $y=-x$ on the expression $left(x + sqrt{1+x^2}right)left(y + sqrt{1+y^2}right)$ and see what happens.






    share|cite|improve this answer











    $endgroup$









    • 2




      $begingroup$
      How to prove $(x + sqrt{1+x^2})(y + sqrt{1+y^2}) = (x + sqrt{1+y^2})(y + sqrt{1+x^2})$?
      $endgroup$
      – Success
      Dec 30 '18 at 10:23






    • 1




      $begingroup$
      @Success I updated my answer to a more straightforward one.
      $endgroup$
      – Rebellos
      Dec 30 '18 at 10:31





















    1












    $begingroup$

    Write $x=tan a$ and $y = tan b$ for some (angles) $a,b$. They exsist since $tan $ is surjective function. Pluging in starting equation we get:



    $$ {sin a+1over cos a}cdot {sin b+1over cos b}=1$$
    and after rearranging we get $$sin(a)+ sin(b) = cos (a+b) - cos 0$$



    which is equivalent to $$2sin{a+bover 2}cos{a-bover 2} = -2sin {a+bover 2}sin{a+bover 2}$$



    Case 1. $sin {a+bover 2}=0$ then $a+b = 2pi k$ so $$x=tan a = tan (2pi k-b) = -tan b = -y$$



    Case 2. $sin {a+bover 2}ne 0$, then $$cos {a-bover 2}+sin{a+bover 2}=0$$
    Factorising this we get:



    $$2cos ({piover 4}-{bover 2})cdot cos({aover 2}-{piover 4})=0$$



    Now we have to choises again.



    1.st: $${piover 4}-{bover 2} = {piover 2}+pi kimplies b =-{piover 2}+2pi k $$
    so $y$ does not exist.



    2.nd case... we get $x$ does not exsist.



    So $x=-y$ and thus second expresins is also $1$.






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Actually, $sqrt{1+tan^2a}neqfrac{1}{cos{a}}.$
      $endgroup$
      – Michael Rozenberg
      Dec 30 '18 at 11:38






    • 1




      $begingroup$
      @MichaelRozenberg We can restrict $-pi/2 < a < pi/2$, so $x=tan a$ is one-to-one
      $endgroup$
      – Dylan
      Dec 30 '18 at 13:58










    • $begingroup$
      @Dylan Yes, of course!
      $endgroup$
      – Michael Rozenberg
      Dec 30 '18 at 14:02



















    0












    $begingroup$

    Hint:



    Like greedoid, WLOG let $x=cot2A,y=cot2B,0<2A,2B<pi$ (Reference )



    $$1=(x+sqrt{1+x^2})(y+sqrt{1+y^2})=cot Acot B$$



    $impliestan A=cot B$



    $x=cot2A=dfrac{1-tan^2A}{2tan A}=dfrac{1-cot^2B}{2cot B}=cdots=-cot2B=-y$






    share|cite|improve this answer









    $endgroup$




















      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      We'll replace $y$ an $-y$.



      Thus, the given it's $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=1$$ and we need to prove that:
      $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=1.$$
      Now, the condition gives
      $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)$$ or
      $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)-left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)+$$
      $$+left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)-left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=0.$$ or
      $$(x-y)left(sqrt{y^2+1}+xright)-left(sqrt{x^2+1}-xright)left(sqrt{x^2+1}-sqrt{y^2+1}right)=0$$ or
      $$(x-y)left(sqrt{y^2+1}+x-frac{(x+y)left(sqrt{x^2+1}-xright)}{sqrt{x^2+1}+sqrt{y^2+1}}right)=0,$$ which gives $x=y$ because the second factor it's
      $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)+(x+y)^2+1>0.$$
      Id est, $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=1$$ and we are done!






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        We'll replace $y$ an $-y$.



        Thus, the given it's $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=1$$ and we need to prove that:
        $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=1.$$
        Now, the condition gives
        $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)$$ or
        $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)-left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)+$$
        $$+left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)-left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=0.$$ or
        $$(x-y)left(sqrt{y^2+1}+xright)-left(sqrt{x^2+1}-xright)left(sqrt{x^2+1}-sqrt{y^2+1}right)=0$$ or
        $$(x-y)left(sqrt{y^2+1}+x-frac{(x+y)left(sqrt{x^2+1}-xright)}{sqrt{x^2+1}+sqrt{y^2+1}}right)=0,$$ which gives $x=y$ because the second factor it's
        $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)+(x+y)^2+1>0.$$
        Id est, $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=1$$ and we are done!






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          We'll replace $y$ an $-y$.



          Thus, the given it's $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=1$$ and we need to prove that:
          $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=1.$$
          Now, the condition gives
          $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)$$ or
          $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)-left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)+$$
          $$+left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)-left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=0.$$ or
          $$(x-y)left(sqrt{y^2+1}+xright)-left(sqrt{x^2+1}-xright)left(sqrt{x^2+1}-sqrt{y^2+1}right)=0$$ or
          $$(x-y)left(sqrt{y^2+1}+x-frac{(x+y)left(sqrt{x^2+1}-xright)}{sqrt{x^2+1}+sqrt{y^2+1}}right)=0,$$ which gives $x=y$ because the second factor it's
          $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)+(x+y)^2+1>0.$$
          Id est, $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=1$$ and we are done!






          share|cite|improve this answer











          $endgroup$



          We'll replace $y$ an $-y$.



          Thus, the given it's $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=1$$ and we need to prove that:
          $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=1.$$
          Now, the condition gives
          $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)$$ or
          $$left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-yright)-left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)+$$
          $$+left(sqrt{y^2+1}+xright)left(sqrt{x^2+1}-xright)-left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=0.$$ or
          $$(x-y)left(sqrt{y^2+1}+xright)-left(sqrt{x^2+1}-xright)left(sqrt{x^2+1}-sqrt{y^2+1}right)=0$$ or
          $$(x-y)left(sqrt{y^2+1}+x-frac{(x+y)left(sqrt{x^2+1}-xright)}{sqrt{x^2+1}+sqrt{y^2+1}}right)=0,$$ which gives $x=y$ because the second factor it's
          $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)+(x+y)^2+1>0.$$
          Id est, $$left(sqrt{x^2+1}+xright)left(sqrt{y^2+1}-yright)=left(sqrt{x^2+1}+xright)left(sqrt{x^2+1}-xright)=1$$ and we are done!







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 30 '18 at 11:13

























          answered Dec 30 '18 at 11:07









          Michael RozenbergMichael Rozenberg

          111k1897201




          111k1897201























              2












              $begingroup$

              Hint :



              By the hypothesis of the problem, do some algebra and show that :



              $$left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1 Leftrightarrow dots Leftrightarrow y = -x$$



              Now, substitute $y=-x$ on the expression $left(x + sqrt{1+x^2}right)left(y + sqrt{1+y^2}right)$ and see what happens.






              share|cite|improve this answer











              $endgroup$









              • 2




                $begingroup$
                How to prove $(x + sqrt{1+x^2})(y + sqrt{1+y^2}) = (x + sqrt{1+y^2})(y + sqrt{1+x^2})$?
                $endgroup$
                – Success
                Dec 30 '18 at 10:23






              • 1




                $begingroup$
                @Success I updated my answer to a more straightforward one.
                $endgroup$
                – Rebellos
                Dec 30 '18 at 10:31


















              2












              $begingroup$

              Hint :



              By the hypothesis of the problem, do some algebra and show that :



              $$left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1 Leftrightarrow dots Leftrightarrow y = -x$$



              Now, substitute $y=-x$ on the expression $left(x + sqrt{1+x^2}right)left(y + sqrt{1+y^2}right)$ and see what happens.






              share|cite|improve this answer











              $endgroup$









              • 2




                $begingroup$
                How to prove $(x + sqrt{1+x^2})(y + sqrt{1+y^2}) = (x + sqrt{1+y^2})(y + sqrt{1+x^2})$?
                $endgroup$
                – Success
                Dec 30 '18 at 10:23






              • 1




                $begingroup$
                @Success I updated my answer to a more straightforward one.
                $endgroup$
                – Rebellos
                Dec 30 '18 at 10:31
















              2












              2








              2





              $begingroup$

              Hint :



              By the hypothesis of the problem, do some algebra and show that :



              $$left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1 Leftrightarrow dots Leftrightarrow y = -x$$



              Now, substitute $y=-x$ on the expression $left(x + sqrt{1+x^2}right)left(y + sqrt{1+y^2}right)$ and see what happens.






              share|cite|improve this answer











              $endgroup$



              Hint :



              By the hypothesis of the problem, do some algebra and show that :



              $$left(x + sqrt{1+y^2}right)left(y + sqrt{1+x^2}right) = 1 Leftrightarrow dots Leftrightarrow y = -x$$



              Now, substitute $y=-x$ on the expression $left(x + sqrt{1+x^2}right)left(y + sqrt{1+y^2}right)$ and see what happens.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 30 '18 at 10:31

























              answered Dec 30 '18 at 10:18









              RebellosRebellos

              16.1k31250




              16.1k31250








              • 2




                $begingroup$
                How to prove $(x + sqrt{1+x^2})(y + sqrt{1+y^2}) = (x + sqrt{1+y^2})(y + sqrt{1+x^2})$?
                $endgroup$
                – Success
                Dec 30 '18 at 10:23






              • 1




                $begingroup$
                @Success I updated my answer to a more straightforward one.
                $endgroup$
                – Rebellos
                Dec 30 '18 at 10:31
















              • 2




                $begingroup$
                How to prove $(x + sqrt{1+x^2})(y + sqrt{1+y^2}) = (x + sqrt{1+y^2})(y + sqrt{1+x^2})$?
                $endgroup$
                – Success
                Dec 30 '18 at 10:23






              • 1




                $begingroup$
                @Success I updated my answer to a more straightforward one.
                $endgroup$
                – Rebellos
                Dec 30 '18 at 10:31










              2




              2




              $begingroup$
              How to prove $(x + sqrt{1+x^2})(y + sqrt{1+y^2}) = (x + sqrt{1+y^2})(y + sqrt{1+x^2})$?
              $endgroup$
              – Success
              Dec 30 '18 at 10:23




              $begingroup$
              How to prove $(x + sqrt{1+x^2})(y + sqrt{1+y^2}) = (x + sqrt{1+y^2})(y + sqrt{1+x^2})$?
              $endgroup$
              – Success
              Dec 30 '18 at 10:23




              1




              1




              $begingroup$
              @Success I updated my answer to a more straightforward one.
              $endgroup$
              – Rebellos
              Dec 30 '18 at 10:31






              $begingroup$
              @Success I updated my answer to a more straightforward one.
              $endgroup$
              – Rebellos
              Dec 30 '18 at 10:31













              1












              $begingroup$

              Write $x=tan a$ and $y = tan b$ for some (angles) $a,b$. They exsist since $tan $ is surjective function. Pluging in starting equation we get:



              $$ {sin a+1over cos a}cdot {sin b+1over cos b}=1$$
              and after rearranging we get $$sin(a)+ sin(b) = cos (a+b) - cos 0$$



              which is equivalent to $$2sin{a+bover 2}cos{a-bover 2} = -2sin {a+bover 2}sin{a+bover 2}$$



              Case 1. $sin {a+bover 2}=0$ then $a+b = 2pi k$ so $$x=tan a = tan (2pi k-b) = -tan b = -y$$



              Case 2. $sin {a+bover 2}ne 0$, then $$cos {a-bover 2}+sin{a+bover 2}=0$$
              Factorising this we get:



              $$2cos ({piover 4}-{bover 2})cdot cos({aover 2}-{piover 4})=0$$



              Now we have to choises again.



              1.st: $${piover 4}-{bover 2} = {piover 2}+pi kimplies b =-{piover 2}+2pi k $$
              so $y$ does not exist.



              2.nd case... we get $x$ does not exsist.



              So $x=-y$ and thus second expresins is also $1$.






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                Actually, $sqrt{1+tan^2a}neqfrac{1}{cos{a}}.$
                $endgroup$
                – Michael Rozenberg
                Dec 30 '18 at 11:38






              • 1




                $begingroup$
                @MichaelRozenberg We can restrict $-pi/2 < a < pi/2$, so $x=tan a$ is one-to-one
                $endgroup$
                – Dylan
                Dec 30 '18 at 13:58










              • $begingroup$
                @Dylan Yes, of course!
                $endgroup$
                – Michael Rozenberg
                Dec 30 '18 at 14:02
















              1












              $begingroup$

              Write $x=tan a$ and $y = tan b$ for some (angles) $a,b$. They exsist since $tan $ is surjective function. Pluging in starting equation we get:



              $$ {sin a+1over cos a}cdot {sin b+1over cos b}=1$$
              and after rearranging we get $$sin(a)+ sin(b) = cos (a+b) - cos 0$$



              which is equivalent to $$2sin{a+bover 2}cos{a-bover 2} = -2sin {a+bover 2}sin{a+bover 2}$$



              Case 1. $sin {a+bover 2}=0$ then $a+b = 2pi k$ so $$x=tan a = tan (2pi k-b) = -tan b = -y$$



              Case 2. $sin {a+bover 2}ne 0$, then $$cos {a-bover 2}+sin{a+bover 2}=0$$
              Factorising this we get:



              $$2cos ({piover 4}-{bover 2})cdot cos({aover 2}-{piover 4})=0$$



              Now we have to choises again.



              1.st: $${piover 4}-{bover 2} = {piover 2}+pi kimplies b =-{piover 2}+2pi k $$
              so $y$ does not exist.



              2.nd case... we get $x$ does not exsist.



              So $x=-y$ and thus second expresins is also $1$.






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                Actually, $sqrt{1+tan^2a}neqfrac{1}{cos{a}}.$
                $endgroup$
                – Michael Rozenberg
                Dec 30 '18 at 11:38






              • 1




                $begingroup$
                @MichaelRozenberg We can restrict $-pi/2 < a < pi/2$, so $x=tan a$ is one-to-one
                $endgroup$
                – Dylan
                Dec 30 '18 at 13:58










              • $begingroup$
                @Dylan Yes, of course!
                $endgroup$
                – Michael Rozenberg
                Dec 30 '18 at 14:02














              1












              1








              1





              $begingroup$

              Write $x=tan a$ and $y = tan b$ for some (angles) $a,b$. They exsist since $tan $ is surjective function. Pluging in starting equation we get:



              $$ {sin a+1over cos a}cdot {sin b+1over cos b}=1$$
              and after rearranging we get $$sin(a)+ sin(b) = cos (a+b) - cos 0$$



              which is equivalent to $$2sin{a+bover 2}cos{a-bover 2} = -2sin {a+bover 2}sin{a+bover 2}$$



              Case 1. $sin {a+bover 2}=0$ then $a+b = 2pi k$ so $$x=tan a = tan (2pi k-b) = -tan b = -y$$



              Case 2. $sin {a+bover 2}ne 0$, then $$cos {a-bover 2}+sin{a+bover 2}=0$$
              Factorising this we get:



              $$2cos ({piover 4}-{bover 2})cdot cos({aover 2}-{piover 4})=0$$



              Now we have to choises again.



              1.st: $${piover 4}-{bover 2} = {piover 2}+pi kimplies b =-{piover 2}+2pi k $$
              so $y$ does not exist.



              2.nd case... we get $x$ does not exsist.



              So $x=-y$ and thus second expresins is also $1$.






              share|cite|improve this answer











              $endgroup$



              Write $x=tan a$ and $y = tan b$ for some (angles) $a,b$. They exsist since $tan $ is surjective function. Pluging in starting equation we get:



              $$ {sin a+1over cos a}cdot {sin b+1over cos b}=1$$
              and after rearranging we get $$sin(a)+ sin(b) = cos (a+b) - cos 0$$



              which is equivalent to $$2sin{a+bover 2}cos{a-bover 2} = -2sin {a+bover 2}sin{a+bover 2}$$



              Case 1. $sin {a+bover 2}=0$ then $a+b = 2pi k$ so $$x=tan a = tan (2pi k-b) = -tan b = -y$$



              Case 2. $sin {a+bover 2}ne 0$, then $$cos {a-bover 2}+sin{a+bover 2}=0$$
              Factorising this we get:



              $$2cos ({piover 4}-{bover 2})cdot cos({aover 2}-{piover 4})=0$$



              Now we have to choises again.



              1.st: $${piover 4}-{bover 2} = {piover 2}+pi kimplies b =-{piover 2}+2pi k $$
              so $y$ does not exist.



              2.nd case... we get $x$ does not exsist.



              So $x=-y$ and thus second expresins is also $1$.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 30 '18 at 11:18

























              answered Dec 30 '18 at 11:02









              Maria MazurMaria Mazur

              50.5k1361126




              50.5k1361126








              • 1




                $begingroup$
                Actually, $sqrt{1+tan^2a}neqfrac{1}{cos{a}}.$
                $endgroup$
                – Michael Rozenberg
                Dec 30 '18 at 11:38






              • 1




                $begingroup$
                @MichaelRozenberg We can restrict $-pi/2 < a < pi/2$, so $x=tan a$ is one-to-one
                $endgroup$
                – Dylan
                Dec 30 '18 at 13:58










              • $begingroup$
                @Dylan Yes, of course!
                $endgroup$
                – Michael Rozenberg
                Dec 30 '18 at 14:02














              • 1




                $begingroup$
                Actually, $sqrt{1+tan^2a}neqfrac{1}{cos{a}}.$
                $endgroup$
                – Michael Rozenberg
                Dec 30 '18 at 11:38






              • 1




                $begingroup$
                @MichaelRozenberg We can restrict $-pi/2 < a < pi/2$, so $x=tan a$ is one-to-one
                $endgroup$
                – Dylan
                Dec 30 '18 at 13:58










              • $begingroup$
                @Dylan Yes, of course!
                $endgroup$
                – Michael Rozenberg
                Dec 30 '18 at 14:02








              1




              1




              $begingroup$
              Actually, $sqrt{1+tan^2a}neqfrac{1}{cos{a}}.$
              $endgroup$
              – Michael Rozenberg
              Dec 30 '18 at 11:38




              $begingroup$
              Actually, $sqrt{1+tan^2a}neqfrac{1}{cos{a}}.$
              $endgroup$
              – Michael Rozenberg
              Dec 30 '18 at 11:38




              1




              1




              $begingroup$
              @MichaelRozenberg We can restrict $-pi/2 < a < pi/2$, so $x=tan a$ is one-to-one
              $endgroup$
              – Dylan
              Dec 30 '18 at 13:58




              $begingroup$
              @MichaelRozenberg We can restrict $-pi/2 < a < pi/2$, so $x=tan a$ is one-to-one
              $endgroup$
              – Dylan
              Dec 30 '18 at 13:58












              $begingroup$
              @Dylan Yes, of course!
              $endgroup$
              – Michael Rozenberg
              Dec 30 '18 at 14:02




              $begingroup$
              @Dylan Yes, of course!
              $endgroup$
              – Michael Rozenberg
              Dec 30 '18 at 14:02











              0












              $begingroup$

              Hint:



              Like greedoid, WLOG let $x=cot2A,y=cot2B,0<2A,2B<pi$ (Reference )



              $$1=(x+sqrt{1+x^2})(y+sqrt{1+y^2})=cot Acot B$$



              $impliestan A=cot B$



              $x=cot2A=dfrac{1-tan^2A}{2tan A}=dfrac{1-cot^2B}{2cot B}=cdots=-cot2B=-y$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Hint:



                Like greedoid, WLOG let $x=cot2A,y=cot2B,0<2A,2B<pi$ (Reference )



                $$1=(x+sqrt{1+x^2})(y+sqrt{1+y^2})=cot Acot B$$



                $impliestan A=cot B$



                $x=cot2A=dfrac{1-tan^2A}{2tan A}=dfrac{1-cot^2B}{2cot B}=cdots=-cot2B=-y$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Hint:



                  Like greedoid, WLOG let $x=cot2A,y=cot2B,0<2A,2B<pi$ (Reference )



                  $$1=(x+sqrt{1+x^2})(y+sqrt{1+y^2})=cot Acot B$$



                  $impliestan A=cot B$



                  $x=cot2A=dfrac{1-tan^2A}{2tan A}=dfrac{1-cot^2B}{2cot B}=cdots=-cot2B=-y$






                  share|cite|improve this answer









                  $endgroup$



                  Hint:



                  Like greedoid, WLOG let $x=cot2A,y=cot2B,0<2A,2B<pi$ (Reference )



                  $$1=(x+sqrt{1+x^2})(y+sqrt{1+y^2})=cot Acot B$$



                  $impliestan A=cot B$



                  $x=cot2A=dfrac{1-tan^2A}{2tan A}=dfrac{1-cot^2B}{2cot B}=cdots=-cot2B=-y$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 30 '18 at 11:48









                  lab bhattacharjeelab bhattacharjee

                  229k15159279




                  229k15159279















                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten