Elliptic regularity on compact manifold without boundary
up vote
3
down vote
favorite
Let $(M,g)$ be a Riemannian compact manifold without boundary, and $Delta$ is the Laplace-Beltrami operator on $M$. Is there any result on the elliptic regularity like this:
For any $uin H^1(M)$, and $fin L^2(M)$ such that $Delta u = f$ (in the sens of distributions), Then $u in H^2(M)$.
If there is a nice reference for such regularity result It would be good.
reference-request riemannian-geometry elliptic-pde manifolds regularity
add a comment |
up vote
3
down vote
favorite
Let $(M,g)$ be a Riemannian compact manifold without boundary, and $Delta$ is the Laplace-Beltrami operator on $M$. Is there any result on the elliptic regularity like this:
For any $uin H^1(M)$, and $fin L^2(M)$ such that $Delta u = f$ (in the sens of distributions), Then $u in H^2(M)$.
If there is a nice reference for such regularity result It would be good.
reference-request riemannian-geometry elliptic-pde manifolds regularity
I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
– Neal
1 hour ago
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Let $(M,g)$ be a Riemannian compact manifold without boundary, and $Delta$ is the Laplace-Beltrami operator on $M$. Is there any result on the elliptic regularity like this:
For any $uin H^1(M)$, and $fin L^2(M)$ such that $Delta u = f$ (in the sens of distributions), Then $u in H^2(M)$.
If there is a nice reference for such regularity result It would be good.
reference-request riemannian-geometry elliptic-pde manifolds regularity
Let $(M,g)$ be a Riemannian compact manifold without boundary, and $Delta$ is the Laplace-Beltrami operator on $M$. Is there any result on the elliptic regularity like this:
For any $uin H^1(M)$, and $fin L^2(M)$ such that $Delta u = f$ (in the sens of distributions), Then $u in H^2(M)$.
If there is a nice reference for such regularity result It would be good.
reference-request riemannian-geometry elliptic-pde manifolds regularity
reference-request riemannian-geometry elliptic-pde manifolds regularity
asked 4 hours ago
S. Cho
1678
1678
I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
– Neal
1 hour ago
add a comment |
I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
– Neal
1 hour ago
I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
– Neal
1 hour ago
I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
– Neal
1 hour ago
add a comment |
2 Answers
2
active
oldest
votes
up vote
4
down vote
This result is true. This is Theorem 6.30 in:
F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.
While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.
2
I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
– Mike Miller
1 hour ago
add a comment |
up vote
4
down vote
This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
$$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
where $Delta_0$ is the standard flat Laplacian.
To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
$$
Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
$$
where $|a^{ij}|, |b_k| < epsilon << 1$.
Therefore, if $Delta_g u = f$, then
$$
Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
$$
Therefore, by $(*)$
$$
|u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
$$
If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
$$
|u|_{H^2} le C|f|_{L^2}.
$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
This result is true. This is Theorem 6.30 in:
F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.
While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.
2
I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
– Mike Miller
1 hour ago
add a comment |
up vote
4
down vote
This result is true. This is Theorem 6.30 in:
F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.
While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.
2
I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
– Mike Miller
1 hour ago
add a comment |
up vote
4
down vote
up vote
4
down vote
This result is true. This is Theorem 6.30 in:
F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.
While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.
This result is true. This is Theorem 6.30 in:
F.W Warner, Foundations of differentiable manifolds and Lie groups. Corrected reprint of the 1971 edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983.
While there are many books that deal with elliptic regularity on manifolds, Warner's book seems most elementary and oriented towards those who do not know much about analysis, but are familiar with geometry of manifolds.
answered 3 hours ago
Piotr Hajlasz
5,87142253
5,87142253
2
I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
– Mike Miller
1 hour ago
add a comment |
2
I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
– Mike Miller
1 hour ago
2
2
I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
– Mike Miller
1 hour ago
I am very fond of Wells' "Differential analysis on complex manifolds" chapter on Hodge theory. The approach by way of pseudo-differential operators may feel less elementary, but I think it leads to a clean proof and conceptual insights. I read it when I was an early graduate student who was still getting comfortable with Sobolev spaces.
– Mike Miller
1 hour ago
add a comment |
up vote
4
down vote
This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
$$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
where $Delta_0$ is the standard flat Laplacian.
To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
$$
Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
$$
where $|a^{ij}|, |b_k| < epsilon << 1$.
Therefore, if $Delta_g u = f$, then
$$
Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
$$
Therefore, by $(*)$
$$
|u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
$$
If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
$$
|u|_{H^2} le C|f|_{L^2}.
$$
add a comment |
up vote
4
down vote
This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
$$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
where $Delta_0$ is the standard flat Laplacian.
To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
$$
Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
$$
where $|a^{ij}|, |b_k| < epsilon << 1$.
Therefore, if $Delta_g u = f$, then
$$
Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
$$
Therefore, by $(*)$
$$
|u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
$$
If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
$$
|u|_{H^2} le C|f|_{L^2}.
$$
add a comment |
up vote
4
down vote
up vote
4
down vote
This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
$$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
where $Delta_0$ is the standard flat Laplacian.
To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
$$
Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
$$
where $|a^{ij}|, |b_k| < epsilon << 1$.
Therefore, if $Delta_g u = f$, then
$$
Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
$$
Therefore, by $(*)$
$$
|u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
$$
If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
$$
|u|_{H^2} le C|f|_{L^2}.
$$
This follows from the following regularity estimate for the flat Laplacian case (which is, I believe, proved in Warner's book using Fourier series on a torus but also in most standard texts on elliptic PDEs): Given a bounded open domain $Omega subset mathbb{R}^n$, there exists $C>0$ such that for any function (or even just a distribution) $u$ compactly supported in $Omega$,
$$ tag{*} |u|_{H^2} le C|Delta_0 u|_{L^2}, $$
where $Delta_0$ is the standard flat Laplacian.
To extend this to a local regularity estimate for the Laplace-Beltrami operator, it suffices to prove regularity estimate for $u$ compactly supported on a neighborhood of each point $p in M$. If you use geodesic normal coordinates on a sufficiently small neighborhood of $p$, then you can assume that the Laplace-Beltrami operator is of the form
$$
Delta u = (delta^{ij} + a^{ij}(x))partial^2 + b^kpartial_ku
$$
where $|a^{ij}|, |b_k| < epsilon << 1$.
Therefore, if $Delta_g u = f$, then
$$
Delta_0u = -a_{ij}partial^2_{ij}u - b^kpartial_ku + f
$$
Therefore, by $(*)$
$$
|u|_{H^2} le C(epsilon |u|_{H^2} + |f|_{L^2}).
$$
If the neighborhood is sufficiently small, then $Cepsilon < 1$ and therefore,
$$
|u|_{H^2} le C|f|_{L^2}.
$$
answered 1 hour ago
Deane Yang
19.9k562140
19.9k562140
add a comment |
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f317084%2felliptic-regularity-on-compact-manifold-without-boundary%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I would look in Partial Differential Equations I and PDE II by Taylor. He develops the theory on manifolds.
– Neal
1 hour ago