What's the meaning of multiplicative errors and additive errors?
up vote
0
down vote
favorite
Such skewed, thick-tailed data suggest a model with multiplicative errors instead of additive errors. A standard solution is to transform the dependent variable by taking the natural logarithm.
Can anyone explain multiplicative errors and additive errors here?
Many thanks in advance!
statistics
add a comment |
up vote
0
down vote
favorite
Such skewed, thick-tailed data suggest a model with multiplicative errors instead of additive errors. A standard solution is to transform the dependent variable by taking the natural logarithm.
Can anyone explain multiplicative errors and additive errors here?
Many thanks in advance!
statistics
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Such skewed, thick-tailed data suggest a model with multiplicative errors instead of additive errors. A standard solution is to transform the dependent variable by taking the natural logarithm.
Can anyone explain multiplicative errors and additive errors here?
Many thanks in advance!
statistics
Such skewed, thick-tailed data suggest a model with multiplicative errors instead of additive errors. A standard solution is to transform the dependent variable by taking the natural logarithm.
Can anyone explain multiplicative errors and additive errors here?
Many thanks in advance!
statistics
statistics
asked Nov 11 at 16:11
Yao Zhao
215
215
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
There is not enough context here, but here is a general explanation:
Let's say you are trying to measure an underlying signal $X$ and the observed signal $Y$ is related to the actual signal by $Y = f(X) + epsilon$, where $f(cdot)$ is some function (either known or estimated) and $epsilon$ is the measurement error or noise. In this case, the error is additive, because it adds to the model $Y = f(X)$.
In an alternative scenario, consider that $Y$ and $X$ are related by $Y = g(X)epsilon$. In this case, the error term $epsilon$ is multiplicative, because it multiplies with the model $Y = g(X)$. By applying the log transformation $log(Y) = log(g(X)) + log(epsilon)$, we are back to an additive error framework.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
There is not enough context here, but here is a general explanation:
Let's say you are trying to measure an underlying signal $X$ and the observed signal $Y$ is related to the actual signal by $Y = f(X) + epsilon$, where $f(cdot)$ is some function (either known or estimated) and $epsilon$ is the measurement error or noise. In this case, the error is additive, because it adds to the model $Y = f(X)$.
In an alternative scenario, consider that $Y$ and $X$ are related by $Y = g(X)epsilon$. In this case, the error term $epsilon$ is multiplicative, because it multiplies with the model $Y = g(X)$. By applying the log transformation $log(Y) = log(g(X)) + log(epsilon)$, we are back to an additive error framework.
add a comment |
up vote
2
down vote
There is not enough context here, but here is a general explanation:
Let's say you are trying to measure an underlying signal $X$ and the observed signal $Y$ is related to the actual signal by $Y = f(X) + epsilon$, where $f(cdot)$ is some function (either known or estimated) and $epsilon$ is the measurement error or noise. In this case, the error is additive, because it adds to the model $Y = f(X)$.
In an alternative scenario, consider that $Y$ and $X$ are related by $Y = g(X)epsilon$. In this case, the error term $epsilon$ is multiplicative, because it multiplies with the model $Y = g(X)$. By applying the log transformation $log(Y) = log(g(X)) + log(epsilon)$, we are back to an additive error framework.
add a comment |
up vote
2
down vote
up vote
2
down vote
There is not enough context here, but here is a general explanation:
Let's say you are trying to measure an underlying signal $X$ and the observed signal $Y$ is related to the actual signal by $Y = f(X) + epsilon$, where $f(cdot)$ is some function (either known or estimated) and $epsilon$ is the measurement error or noise. In this case, the error is additive, because it adds to the model $Y = f(X)$.
In an alternative scenario, consider that $Y$ and $X$ are related by $Y = g(X)epsilon$. In this case, the error term $epsilon$ is multiplicative, because it multiplies with the model $Y = g(X)$. By applying the log transformation $log(Y) = log(g(X)) + log(epsilon)$, we are back to an additive error framework.
There is not enough context here, but here is a general explanation:
Let's say you are trying to measure an underlying signal $X$ and the observed signal $Y$ is related to the actual signal by $Y = f(X) + epsilon$, where $f(cdot)$ is some function (either known or estimated) and $epsilon$ is the measurement error or noise. In this case, the error is additive, because it adds to the model $Y = f(X)$.
In an alternative scenario, consider that $Y$ and $X$ are related by $Y = g(X)epsilon$. In this case, the error term $epsilon$ is multiplicative, because it multiplies with the model $Y = g(X)$. By applying the log transformation $log(Y) = log(g(X)) + log(epsilon)$, we are back to an additive error framework.
answered Nov 21 at 6:29
Aditya Dua
6458
6458
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994057%2fwhats-the-meaning-of-multiplicative-errors-and-additive-errors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown